Treatment of HIV/HCV Coinfection and the Management of Drug-Drug Interactions

Jennifer J. Kiser, PharmD
Associate Professor
University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences
Aurora, Colorado

Financial Relationships With Commercial Entities
• Dr. Kiser has received research support awarded to the University of Colorado from Janssen Therapeutics, Gilead Sciences, Inc, and ViiV Healthcare (Updated 9/25/17).

• The IAS–USA staff members in control of this activity have no relevant affiliations to disclose (Updated 9/25/17).

Learning Objectives
At the conclusion of this case, learners will be able to:
• Identify drug-drug interactions with HIV and hepatitis C therapies
• Recognize other therapeutic classes of drugs with the potential for drug interactions with hepatitis C therapies
• Locate reliable resources for screening for drug interactions
• Develop a plan for managing drug interactions
Types of Interactions

- **Pharmacokinetic** – result in a change in the serum/plasma levels of drug
 - Absorption
 - Distribution
 - Metabolism
 - Elimination

- **Pharmacodynamic** – no change in concentrations of drug, but can result in additive, synergistic, or antagonistic effects

CYP450 and Drug Metabolism

- CYP2C
- CYP2D6
- CYP3A4
- CYP1A2
- CYP2E1

Key points

- Majority of drugs metabolized by (or substrates for) CYP3A4
- Enzymes can be induced or inhibited

Selected Membrane Transporters Relevant for HIV and HCV Therapies

<table>
<thead>
<tr>
<th>Transporter</th>
<th>Encoded by</th>
<th>Type of Transporter</th>
<th>Tissue Localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>OATP1B1</td>
<td>SLCO1B1</td>
<td>Uptake</td>
<td>Primarily liver</td>
</tr>
<tr>
<td>OAT1</td>
<td>SLC22A6</td>
<td>Uptake</td>
<td>Primarily kidney</td>
</tr>
<tr>
<td>P-gp</td>
<td>ABCB1</td>
<td>Efflux</td>
<td>Ubiquitous (gut, liver, kidney, etc.)</td>
</tr>
<tr>
<td>BCRP</td>
<td>ABCG2</td>
<td>Efflux</td>
<td>Ubiquitous (gut, liver, kidney, etc.)</td>
</tr>
</tbody>
</table>
Patient Case

- 40 yo female with HIV and HCV genotype 1a both diagnosed in 2010
- ARV - tenofovir disoproxil fumarate 300mg QD/emtricitabine 200mg QD, darunavir 800mg QD/ritonavir 100mg QD x 5 years, CD4 537, HIV TND
- Biopsy 2014 stage 2, recent transient elastography 7.1 kPa
- Labs: HCV RNA 4,530,096 IU/mL, plt 220, Hgb 15.1 g/dL, SCR 0.91 mg/dL (eGFR 66), ALT 184 U/L, AST 114, Alb 4.6, tbil 0.7 mg/dL

High SVR Rates in HIV/HCV Coinfected

- Wyles DL NEJM 2015
- Rockstroh JK Lancet HIV 2015
- Rockstroh JK EASL 2017
- Naggie S NEJM 2015
- Sulkowski MS JAMA 2015
- Wyles DL CID 2017

Which DAA regimen would you use to treat this patient?

1. Elbasvir / Grazoprevir +/- Ribavirin
2. Ritonavir-boosted Paritaprevir, Ombitasvir, Dasabuvir plus Ribavirin
3. Ledipasvir / Sofosbuvir
4. Sofosbuvir / Velpatasvir
5. Glecaprevir / Pibrentasvir
6. Sofosbuvir / Velpatasvir / Voxilaprevir
Elbasvir / Grazoprevir

<table>
<thead>
<tr>
<th>PI Changes and Recommendations</th>
<th>GZR</th>
<th>EBR</th>
<th>ATV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritonavir-boosted atazanavir</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Ritonavir-boosted darunavir</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
</tr>
<tr>
<td>Ritonavir-boosted lopinavir</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
</tr>
<tr>
<td>Ritonavir-boosted tipranavir</td>
<td>No data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efavirenz</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Etravirine</td>
<td>No data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobicistat-boosted elvitegravir</td>
<td>GZR</td>
<td>EBR</td>
<td>↑</td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>GZR</td>
<td>EBR</td>
<td>RPV</td>
</tr>
<tr>
<td>Raltegravir</td>
<td>GZR</td>
<td>EBR</td>
<td>RAL</td>
</tr>
<tr>
<td>Dolutegravir</td>
<td>GZR</td>
<td>EBR</td>
<td>DTG</td>
</tr>
</tbody>
</table>

Comments
- Not recommended for theoretical concern for QTC prolongation.
- Too much RTV.

PrOD with RPV and RAL

<table>
<thead>
<tr>
<th>PI Changes and Recommendations</th>
<th>GZR</th>
<th>EBR</th>
<th>RPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median DRV trough is 3300 ng/mL without PrOD.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troughs are 1056-1600 with PrOD.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not recommended due to too much RTV.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PrOD and HIV PI Interactions

<table>
<thead>
<tr>
<th>PI Changes and Recommendations</th>
<th>GZR</th>
<th>EBR</th>
<th>RAL</th>
<th>DTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolutegravir and raltegravir can be safely combined with PrOD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments
- Drop the ritonavir booster while on PrOD.
- No data with ELV/cobi, but combo is contraindicated.
Ledipasvir / Sofosbuvir with TDF

- TFV exposures are higher when TDF is coadministered with LDV/SOF compared to without LDV/SOF.
- The range of TFV exposures with available safety data:
 - For EFV or RPV: TFV exposures fall within the range.
 - For RTV-boosted PIs: TFV exposures partially exceed the range.

Range of TFV exposures with available safety data

- Data on File, Gilead Sciences.
- Hoetelmans RMW, et al. 6th IWCPHT 2005. Quebec City, Canada. #2.11
- German P, et al. ICPHHT 2014. #O6
- Chittick GE, et al. AAC. 2006; 50(4):1304–10 (SQV+RTV)
- Zhu. 9th IWCPHT. 2008. #023 (ATV+RTV & LPV/r)
- German P, et al. CROI 2015
- Agarwala S, et al. 6th IWCPHT 2005. #16. (ATV+RTV)

In healthy volunteers, TFV increased 40-81% when administered as TDF.
GLSM TFV AUC was 4795 ng*hr/mL with ELV/cobi,
5197 ng*hr/mL with ATV/r, 4427 ng*hr/mL with DRV/r,
and 4314 ng*hr/mL with LPV/r.

Tenofivir PK with SOF/VEL - Volunteers

- In healthy volunteers, TFV increased 40-81% when administered as TDF.
- GLSM TFV AUC was 4795 ng*hr/mL with ELV/cobi,
5197 ng*hr/mL with ATV/r, 4427 ng*hr/mL with DRV/r,
and 4314 ng*hr/mL with LPV/r.

Tenofivir PK with SOF/VEL - Patients

- Phase 3 coinfection trial with SOF/VEL allowed boosted regimens

- By post treatment (PT) week 12, CrCl values were similar to baseline

3 patients with 1 in SCr from baseline of ≥ 0.4 mg/dL.
Tenofvir PK LDV/SOF vs. SOF/VEL

<table>
<thead>
<tr>
<th></th>
<th>Unboosted Regimens</th>
<th>Boosted Regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFV AUC (ng/hr/mL), Mean % CV</td>
<td>3839 (31%), n=335</td>
<td>3740 (26%), n=56</td>
</tr>
<tr>
<td>TFV AUC with LDV/SOF in IDN-4</td>
<td>3590 (25%), n=35</td>
<td></td>
</tr>
<tr>
<td>TFV AUC with SOF/VEL in ASTRAL-5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tenofovir AUCs slightly higher with LDV/SOF vs. SOF/VEL. Tenofovir AUCs with SOF/VEL similar to "typical" values in HIV-monoinfected patients on TDF + boosted HIV protease inhibitor.

Caveats:
- Exposures were modeled using convenience/sparse samples
- No patients on boosted regimens with LDV/SOF
- Small numbers on SOF/VEL
- Adherence is an unknown factor
- Highly selected patients (good renal function, limited concomitant conditions and medications) in order to qualify for study participation

Does this Interaction Translate to an Increased Risk of Nephrotoxicity?

Among 685 HIV/HCV coinfected Veterans on LDV/SOF treatment, no difference in maximum creatinine change during LDV/SOF treatment in those on TDF + HIV protease inhibitor, TDF without an HIV protease inhibitor, and those not on TDF-based ARV.

LDV/SOF and SOF/VEL with TDF

- Avoid in those with CrCl < 60 mL/min
- Avoid with boosters pending further data unless the ARV regimen cannot be changed and urgency of treatment is high
- If the combination is used, need frequent renal monitoring
 - Baseline and every 2-4 weeks on treatment
 - Estimated renal function (CKD-EPI equation suggested by CKD in HIV guidelines)
 - Urinary protein and glucose
- If possible, switch to TAF
TAF – An Alternative to TDF with SOF

- Intact TAF transits directly into target cells where it is intracellularly activated to tenofovir diphosphate (TFV-DP)
- TAF has lower circulating plasma TFV levels compared to TDF 300mg
- Basolateral transporters (OAT1, OAT3) effectively transfer TFV, but not intact TAF, into renal proximal tubular cells
- Lower systemic level of TFV; improved renal safety profile

Another Consideration with SOF/VEL

- VEL is metabolized by CYP3A
- Sensitive to potent inducers of CYP3A
- Cannot be used with EFV (or ETV)

Mogalian E, et al. AASLD 11/13-11/17, Boston, MA

Which of the following statements is TRUE regarding use of the new DAA combinations, GP and SOF/VEL/VOX, with ARV?

1. Ritonavir-boosted HIV protease inhibitors are either contraindicated or not recommended with GP
2. Several patients received the combination of GP and ELV/cobi in the EXPEDITION-2 trial, establishing the safety of this combination
3. All ritonavir-boosted HIV protease inhibitors and ELV/cobi can be used with SOF/VEL/VOX
4. Renal monitoring is not necessary with SOF/VEL/VOX and TDF
Glecaprevir / Pibrentasvir

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Transporters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victim</td>
<td>Substrate/GATPs, Pgs</td>
</tr>
<tr>
<td>Perpetrator</td>
<td>Weakly inhibits CYP3A4, CYP1A2</td>
</tr>
<tr>
<td>Inhibitor</td>
<td>Inhibitor of pg, BCRP, OATPs</td>
</tr>
</tbody>
</table>

PK Changes and Recommendation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma exposure</td>
<td>No RTV-boosted PI with GP</td>
<td>Only 1 patient on this combination in EXPEDITION 2, need more safety data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sofosbuvir / Velpatasvir / Voxilaprevir

- Tenofovir AUC, Cmax, Ctau increased about 40% with SOF/VEL/VOX
- Absolute tenofovir AUC reportedly ~4600 ng*h/mL
- Avoid TDF if CrCl < 60 mL/min
- If TDF is used, monitor renal function carefully
- Use TAF if possible

SOF/VEL/VOX with ARV

Very limited data with DRV/r and ELV/cobi, so monitor for liver toxicity from VOX
Audience Response #2 - ANSWER

Which of the following statements is TRUE regarding use of the new DAA combinations, GP and SOF/VEL/VOX, with ARV?

1. Ritonavir-boosted HIV protease inhibitors are either contraindicated or not recommended with GP √
2. Several patients received the combination of GP and ELV/cobi in the EXPEDITION-2 trial, establishing the safety of this combination X
3. All ritonavir-boosted HIV protease inhibitors and ELV/cobi can be used with SOF/VEL/VOX X
4. Renal monitoring is not necessary with SOF/VEL/VOX and TDF X

Audience Response #1 - ANSWER

Which DAA regimen would you use to treat this patient?

1. Elbasvir / Grazoprevir +/− Ribavirin – not with DRV/r
2. Ritonavir-boosted Paritaprevir, Ombitasvir, Dasabuvir plus Ribavirin – not with DRV/r
3. Ledipasvir / Sofosbuvir - ↑ renal monitoring
4. Sofosbuvir / Velpatasvir ↑ renal monitoring
5. Glecaprevir / Pibrentasvir – not with DRV/r
6. Sofosbuvir / Velpatasvir / Voxilaprevir – limited safety data with DRV/r, not treatment of choice for naïve patient

Patient Case

- 40 yo female with HIV and HCV genotype 1a both diagnosed in 2010
- Medications/PMH include:
 - ARV - tenfovir disoproxil fumarate 300mg QD/emtricitabine 200mg QD, darunavir 800mg QD/ritonavir 100mg QD x 5 years, CD4 537, HIV TND
 - HTN - amlodipine 10mg QD (today bp 122/83)
 - Contraception – levonorgestrel IUD
 - Depression – mirtazapine 15mg po QD
 - GERD – omeprazole 20mg once daily
 - Previously heavy EtOH user, now decreased 1-2 beers few times per week, daily marijuana use, never IDU
How the Top 10 List was Developed

- **Frequency of Concomitant Use**
 - Data from two retrospective analyses which screened concomitant medications against DAA regimens for potential interactions
 - University of Colorado (Langness W J Gastro 2017;23:1618)
 - HCV monoinfected, n=664
 - University of Nijmegen, the Netherlands (Smolders E JAIDS Epub)
 - HIV/HCV coinfected, n=777

- **Frequency of Interaction Screening through University of Liverpool website**
 - Presentation by David Back at Hep C State of the Art Management Meeting "the New York course" May 2017

- **Clinically important interactions (regardless of frequency of concomitant use)**

10 - Amiodarone

- **Sofosbuvir and amiodarone**
 - **9 cases** (3 on SOF/LDV, 5 on SOF/DCV, 1 on S/M/SOF)
 - bradycardia, fatal cardiac arrest, some cases requiring pacemaker insertion
Bradycardia with SOF and Amiodarone – A Pharmacodynamic Interaction

- Amiodarone and SOF concentrations are not increased with the combination
- Studies suggest disruptions in intracellular calcium handling
- Not a class effect
 - MK3682 does not cause bradycardia with amiodarone
 - Depends on diastereochemistry of prodrug

10 - Amiodarone

- Avoid amiodarone during HCV treatment if possible
- If it must be used, consider EBR/GZR or GP

For patients taking amiodarone with to:
 - alternatives, inpatient cardiac monitoring for the first 48 hours of DAA treatment is needed, then daily heart rate monitoring x 2 weeks.

9 - Antiepileptics

- Carbamazepine, phenytoin, phenobarbital, oxcarbazepine cannot be used with any DAAs due to induction of enzymes/transporters
- Alternatives with the least interaction potential are levetiracetam and topiramate
- Small case series on use of sofosbuvir plus higher doses of daclatasvir (60mg twice or thrice daily) with carbamazepine*
 - Daclatasvir levels still low, but patients did achieve SVR.

*Smolders E, Int Wksp Clin Pharm Antiviral Therapy 2017, P_36
Which DAAs are problematic with hormonal contraceptives containing ethinyl estradiol?

1. LDV/SOF and SOF/VEL
2. PrOD and GP
3. EBR/GZR and DCV/SOF

#8 - Hormonal Contraceptives

- Increasing number of young women of childbearing potential with HCV
 - 22% ↑ between 2011-2014
- Many hormonal contraceptive options
 - Intrauterine devices (IUD) – DDI not as relevant, local hormone delivery
 - Progestin-containing subdermal implants (etnonogestrel)
 - Transdermal patch (ethinyl estradiol/norelgestromin)
 - Vaginal ring (ethinyl estradiol/etnonogestrel)
 - Injectables (medroxyprogesterone acetate)
 - Oral contraceptives (estrogen and progestin or progestin only)

Effects of DAAs on Contraceptive Hormones

<table>
<thead>
<tr>
<th>DAAs</th>
<th>Ethinyl Estradiol</th>
<th>Levo-norgestrel</th>
<th>Norgestimate</th>
<th>Norethindrone</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOST</td>
<td>• No patch, no hormone-containing pills. • The progestin-only contraceptives can be used. • Can restart estrogen-containing contraceptives 2 weeks after completing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAST</td>
<td>• No patch, no hormone-containing pills. • The progestin-only contraceptives can be used. • Can restart estrogen-containing contraceptives 2 weeks after completing.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
#7 - Tacrolimus and Cyclosporine

<table>
<thead>
<tr>
<th>Cyclosporine</th>
<th>Tacrolimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sofosbuvir</td>
<td>4.5-fold ↑ in SOF AUC, but GS-331007 metabolite unchanged; no a priori dose adjustment</td>
</tr>
<tr>
<td>Ledipasvir</td>
<td>No data; no a priori dose adjustment</td>
</tr>
<tr>
<td>Elbasvir</td>
<td>5.8-fold ↑ in CSA AUC; modeling suggests using 1/5 of CSA dose during PrOD treatment, monitor CSA levels and titrate CSA dose as needed</td>
</tr>
<tr>
<td>Velpatasvir</td>
<td>No interaction observed; no a priori dose adjustment</td>
</tr>
<tr>
<td>GP</td>
<td>5-fold ↑ in GLE AUC with higher doses (400mg) of CSA; not recommended in patients requiring stable CSA doses > 100 mg/day</td>
</tr>
<tr>
<td>SOF/VEL/VOX</td>
<td>9.4-fold ↑ in VOX AUC; combination is not recommended</td>
</tr>
</tbody>
</table>

For all DAAs, even if no a priori dose adjustment is needed, must monitor immunosuppressant levels and titrate dose as needed.

#6 – Opioids and Opioid Replacement

<table>
<thead>
<tr>
<th>Opioid / Opioid Substitutes</th>
<th>LDV/SOF</th>
<th>SOF/VEL</th>
<th>PROD</th>
<th>GS331007</th>
<th>GP</th>
<th>SOF/VEL/VOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydromorphone</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Hydrocodone Acetaminophenol</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Methadone</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Methadone Phosphate</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Naloxone</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Propoxyphene</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Remifentanil</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Teldafadine</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tapentadol</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

www.hep-druginteractions.org

#5 - Recreational / ChemSex Drugs

<table>
<thead>
<tr>
<th>LDV/SOF</th>
<th>SOF/VEL</th>
<th>PROD</th>
<th>GS331007</th>
<th>GP</th>
<th>SOF/VEL/VOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Crack</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ecstasy</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ecstasy (MDMA)</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ecstasy (Ecstasy)</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>✔</td>
<td>✔</td>
<td>Monitor*</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PCP</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Site courtesy of David Back (with modification), University of Liverpool, www.hep-druginteractions.org
#4 Statins

Both CYP and transporter mediated interactions to consider with statins

DAAs that inhibit the uptake transporter OATP1B1, the efflux transporter BCRP, and CYP3A result in ↑ plasma concentrations of statin

- Pravastatin
- Rosuvastatin
- Simvastatin
- Lovastatin
- Atorvastatin

Always check for interactions with statins and DAAs

<table>
<thead>
<tr>
<th>Hepatocyte OATP1B1 BCRP CYP3A</th>
<th>pravastatin</th>
<th>rosuvastatin</th>
<th>simvastatin</th>
<th>lovastatin</th>
<th>atorvastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pravastatin</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Simvastatin:</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lovastatin:</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Atorvastatin:</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

Always check for interactions with statins and DAAs

#3 - Psychotropics - Antidepressants

<table>
<thead>
<tr>
<th>SSRI/SESR</th>
<th>LCR/SEP</th>
<th>ROH</th>
<th>SOP/VEL</th>
<th>GP</th>
<th>SOP/VEL/VOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escitalopram</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Bupropion</td>
<td>√</td>
<td>√</td>
<td>Monitor, reduce if clinically indicated</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Citalopram</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Trazodone</td>
<td>√</td>
<td>√</td>
<td>Dose reduce</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Sertraline</td>
<td>√</td>
<td>√</td>
<td>Monitor, reduce if clinically indicated</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>√</td>
<td>√</td>
<td>Monitor, reduce if clinically indicated</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Duloxetine</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>√</td>
<td>√</td>
<td>Monitor, reduce if clinically indicated</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

www.hep-druginteractions.org
#3 – Psychotropics - Antipsychotics

EBR/GZR
- **LDV/SOF**
- **PrOD**
- **SOF/VEL**
- **GP**
- **SOF/VEL/VOX**

<table>
<thead>
<tr>
<th>Antipsychotic</th>
<th>EBR/GZR</th>
<th>LDV/SOF</th>
<th>PrOD</th>
<th>SOF/VEL</th>
<th>GP</th>
<th>SOF/VEL/VOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aripiprazole</td>
<td>Monitor</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clozapine</td>
<td>√</td>
<td>Monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluphenazine</td>
<td>√</td>
<td>Monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olanzapine</td>
<td>√</td>
<td>Monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quetiapine</td>
<td>Use with caution, consider therapeutic drug monitoring and/or EKGs</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risperidone</td>
<td>√</td>
<td>Monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New category for interactions

yellow - interaction occurs, but no action required

#3 – Psychotropics - Benzodiazepines/Anxiolytics/Sedative Hypnotics

EBR/GZR
- **LDV/SOF**
- **PrOD**
- **SOF/VEL**
- **GP**
- **SOF/VEL/VOX**

<table>
<thead>
<tr>
<th>Benzodiazepine</th>
<th>EBR/GZR</th>
<th>LDV/SOF</th>
<th>PrOD</th>
<th>SOF/VEL</th>
<th>GP</th>
<th>SOF/VEL/VOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolpidem</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>√</td>
<td>√</td>
<td>↑34%</td>
<td>Monitor, consider dose reduction if clinically indicated</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>√</td>
<td>√</td>
<td>Monitor</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Diazepam</td>
<td>√</td>
<td>√</td>
<td>Monitor</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Temazepam</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
#2 - Antihypertensives

- CYP enzymes not involved in metabolism of ACE inhibitors or diuretics
- Carvedilol and nabivolol are metabolized to some extent by CYP3A4
- Contribution of CYP3A to irbesartan and losartan
- Calcium channel blockers are highly reliant on CYP3A for metabolism

<table>
<thead>
<tr>
<th>DAA Regimen</th>
<th>HCTZ</th>
<th>GP</th>
<th>LSV/LOX</th>
<th>FTOH</th>
<th>ESP/VEL</th>
<th>ESP/VEL/VOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbasvir/Grzoprevir</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Glecaprevir/Pibrentasvir</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ledipasvir/Sofosbuvir</td>
<td>✓</td>
<td>Monitor</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>Monitor</td>
</tr>
<tr>
<td>Sofosbuvir/Velpatasvir</td>
<td>✓</td>
<td>Monitor</td>
<td>12 h post, consider dose reduction</td>
<td>Monitor</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

www.hep-interactions.org

Absorption of which of the following DAA regimens is NOT reduced by proton pump inhibitors?

1. Elbasvir/grazoprevir
2. Glecaprevir/pibrentasvir
3. Ledipasvir/sofosbuvir
4. Sofosbuvir/velpatasvir
#1 - Gastric Acid Modifiers

- Exposures of the following DAAs are reduced with gastric acid modifiers:
 - Ledipasvir
 - Velpatasvir
 - Glecaprevir

- Careful adherence is essential:
 - Appropriate temporal separation of DAA and gastric acid modifier
 - Dosing limitations of the gastric acid modifier

LDV/SOF dosing with gastric acid modifiers

- Separate antacids by 4 hours
- PPI doses comparable to omeprazole 20mg can be administered simultaneously with SOF/LDV under fasted conditions
- H2 blocker doses should not exceed the equivalent of famotidine 40mg BID
- Avoid if possible

<table>
<thead>
<tr>
<th>Equivalent PPI Doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esomeprazole 40mg</td>
</tr>
<tr>
<td>Pantoprazole 40mg</td>
</tr>
<tr>
<td>Lansoprazole 30mg</td>
</tr>
<tr>
<td>Rabeprazole 20mg</td>
</tr>
<tr>
<td>Omeprazole 20mg</td>
</tr>
</tbody>
</table>

PPI Use and SVR with LDV/SOF

- No difference in SVR based on PPI use among 2,034 genotype 1 patients overall.
- PPI type and dose did not affect SVR, but those on twice daily PPI had a lower SVR (92%, p=0.03)

- Afdhal N EASL 2016
SOF/VEL and SOF/VEL/VOX dosing with gastric acid modifiers

- Unlike the current guidance with ledipasvir, recommended to take SOF/VEL in the fed state 4 hours before OME 20mg equivalent
- VEL exposures in the healthy volunteers receiving 20mg OME in the fed state similar to VEL exposures in Phase 3 trials

Mogalian E, et al. ASCPT, 3/8-3/12, 2016, San Diego, CA, #PI-050

GP dosing with gastric acid modifiers

- Unlike with LDV and VEL, this is not an interaction with the NS5A (PIB), it is a reduction in the protease inhibitor (GLE) absorption

<table>
<thead>
<tr>
<th></th>
<th>Effect on GLE (NS5A)</th>
<th>Effect on PIB (NS5A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OME 20mg QD</td>
<td>↑29%</td>
<td>--</td>
</tr>
<tr>
<td>OME 40mg QD 1 hr before GP + breakfast</td>
<td>↑51%</td>
<td>--</td>
</tr>
<tr>
<td>OME 40mg QD in evening</td>
<td>↑49%</td>
<td>--</td>
</tr>
</tbody>
</table>

- The clinical significance and management are unclear
- Do not exceed OME 20mg QD pending further data

SOF/VEL/VOX with gastric acid modifiers

- H2RA: No significant change in SOF, VEL, or VOX with famotidine 40 mg simultaneously or 12-h stagger
- PPI: SOF/VEL/VOX dosed 2 hours after (“worst case”) or 4 hours before (“best case”) omeprazole 20 mg
- Effect is the same; VEL AUC ~50% lower
Gastric Acid Modifiers - Summary

- Do Not Exceed 20mg omeprazole equivalent with
 - LDV/SOF
 - SOF/VEL
 - GP
 - SOF/VEL/VOX

Resources for Drug Interaction Screening

- **Specific to Antiretroviral Agents**
 - AASLD/IDSA HCV Guidance
 - www.hcvguidelines.org
 - DHHS Guidelines Drug Interaction Tables
 - www.aidsinfo.nih.gov
- **University of Liverpool**
 - www.hep-druginteractions.org
 - App: Liverpool HEP iChart

Hepatic and Renal Impairment

- **Advanced Liver Disease**
 - Exposures of HCV protease inhibitors are increased
 - Increased risk of hepatotoxicity
 - Sofosbuvir and NS5A combinations (with or without ribavirin) are best
- **Renal Impairment**
 - GP and EBR/GZR
- **Both hepatic and renal impairment**
 - Insufficient data
 - Case series are accumulating on use of SOF in renal impairment
 - In Child-Pugh B, glecaprevir AUC is increased 2-fold – FDA accepted a 3-fold increase with ELV/ribi as “safe”, but data are extremely limited
Summary

- Individuals with HIV/HCV coinfection have a high burden of concomitant conditions and medications.
- A critical consideration in the treatment of HCV is the potential for drug interactions.
 - Especially for HIV infected patients where stakes are high for failure.
- A systematic approach to the identification and management of drug interactions is essential.
- In general, current therapies have well-characterized pharmacology and manageable drug interaction profiles, but knowledge gaps remain.

Clinical Pharmacology Knowledge Gaps

- How well do results of interaction studies in healthy volunteers translate to patients?
- Are there renal risks associated with use of TDF and SOF-based HCV therapy?
- What is the therapeutic range of DAAs?
- What antiepileptic medications are safe and effective with DAAs?
- What is the clinical relevance of PPI doses exceeding 20mg omeprazole with GP and SOF/VEL/VOX?
- Which HCV treatment is best for patients with both renal and hepatic impairment?