Highlights from CROI 2017 and IAS 2017
Focus on Antiretroviral Therapy

Joseph J. Eron Jr, MD
Professor of Medicine
The University of North Carolina at Chapel Hill
Chapel Hill, North Carolina

San Antonio, Texas: August 21-23, 2017

Financial Relationships With Commercial Entities

- Dr Eron received research grants awarded to his institution from Gilead Sciences, Inc, Janssen, and ViiV Healthcare, and has served as a consultant to Bristol-Myers Squibb, Gilead Sciences, Inc, Janssen, Merck, and ViiV Healthcare. (Updated 08/17/17)

Learning Objectives

After attending this presentation, learners will be able to:

- List the approximate changes in estimated HIV incidence overall and in individual risk groups from 2008 to 2014
- Describe at least two combination antiretroviral therapies that are in development that use only two active antiretroviral agents.
- List the three factors that had the greatest impact (attributable risk) on myocardial infarction in HIV-infected patients in the NA-ACCORD study.
Outline of the Talk

• HIV Epidemiology
• Where we are with Antiretroviral Therapy
• New Antiretroviral therapy – coming soon
• New Antiretroviral therapy – what the future may hold
• New uses of existing ART
 – Dolutegravir/rilpivirine, dolutegravir mono-therapy
• Complications of HIV and its treatment
• HIV Prevention

ARS Question #1

• The CDC estimates that HIV incidence in the US from 2008 to 2014 has
 1. Increased by about 4% per year
 2. Was essentially stable as it has been for 15 years
 3. Decreased by about 3.5% per year
 4. Decreased by about 6.0% per year
 5. Unsure

- Cross-sectional, two-stage cluster sample
 - 286 randomly sampled enumeration areas
 - 6,417 households (HH)

Substantial Progress in Confronting the HIV Epidemic in Swaziland

- Population: 1,451,428
- Rural population: 79%
- Median age: 21.4 years
- Population growth rate: 1.1%
- HIV prevalence: 32%, SHMBS1, 2011

Notes:
- The CDC estimates that HIV incidence in the US from 2008 to 2014 has increased by about 4% per year.
- Was essentially stable as it has been for 15 years.
- Decreased by about 3.5% per year.
- Decreased by about 6.0% per year.

- Estimated annual percentage change is different from zero at the 5% significant level.

- Adjusted for missing risk factor information. Heterosexual contact with a person known to have, or to be at high risk for, HIV infection.

- Data include persons with diagnosis of HIV infection regardless of stage of disease at diagnosis.

- Note: Data include persons with diagnosis of HIV infection regardless of stage of disease at diagnosis.

- Substantial Progress in Confronting the HIV Epidemic in Swaziland

- South African Reserve
- Median age: 21.4 years
- Population growth rate: 1.1%
- HIV prevalence: 32%, SHMBS1, 2011

- Cross-sectional, two-stage cluster sample
 - 286 randomly sampled enumeration areas
 - 6,417 households (HH)

- Notes:
 - The CDC estimates that HIV incidence in the US from 2008 to 2014 has increased by about 4% per year.
 - Was essentially stable as it has been for 15 years.
 - Decreased by about 3.5% per year.
 - Decreased by about 6.0% per year.

- Estimated annual percentage change is different from zero at the 5% significant level.

- Adjusted for missing risk factor information. Heterosexual contact with a person known to have, or to be at high risk for, HIV infection.

- Data include persons with diagnosis of HIV infection regardless of stage of disease at diagnosis.

- Note: Data include persons with diagnosis of HIV infection regardless of stage of disease at diagnosis.
ANTIRETROVIRAL THERAPY

INCREASED PERSISTENCE OF INITIAL ART WITH INSTI-CONTAINING REGIMENS

<table>
<thead>
<tr>
<th>Regimen</th>
<th>HR (95% CI)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTI</td>
<td>0.49 (0.35, 0.69)</td>
<td>0.70 (0.46, 1.06)</td>
</tr>
<tr>
<td>bPI</td>
<td>1.24 (1.05, 1.47)</td>
<td>1.24 (1.01, 1.53)</td>
</tr>
<tr>
<td>Other</td>
<td>1.47 (1.24, 1.75)</td>
<td>1.21 (0.99, 1.46)</td>
</tr>
<tr>
<td>NRTI</td>
<td>2.98 (2.38, 3.74)</td>
<td>1.72 (1.35, 2.19)</td>
</tr>
<tr>
<td>NNRTI</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
</tbody>
</table>
ANTIRETROVIRAL THERAPY – NEW AGENTS

Randomized Double-blind Phase III study of Bictegravir/TAF/FTC vs. Dolutegravir/ABC/3TC

GS-US-360-1489 Study Design

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>Bictegravir/TAF/FTC</th>
<th>Dolutegravir/ABC/3TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) median (IQR)</td>
<td>50 (42, 57)</td>
<td>50 (45, 58)</td>
</tr>
<tr>
<td>Male, %</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>Resistance, %</td>
<td>26</td>
<td>36</td>
</tr>
<tr>
<td>Baseline viral load, copies/mL</td>
<td>6.3 ± 0.1</td>
<td>6.3 ± 0.1</td>
</tr>
<tr>
<td>CD4 count, copies/mL</td>
<td>279 ± 217</td>
<td>271 ± 260</td>
</tr>
<tr>
<td>NRTI-experienced, %</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

Virologic Outcome at Week 48

No resistance in either arm

More nausea with DTG/ABC/3TC: 22.9% vs 10.2%

Gallant et al IAS 2017

Randomized Double-blind Phase III study of Bictegravir/TAF/FTC vs. Dolutegravir plus TAF/FTC

Methods

Study Design

Baseline Characteristics

No resistance in either arm

More nausea with DTG/ABC/3TC: 22.9% vs 10.2%

Sax et al IAS 2017
No emergence of resistance in either arm
No substantial differences in adverse events or laboratory abnormalities between arms.

LATTE-2: Study of Long Acting Cabotegravir and Rilpivirine – 96 week data

Inclusion Criteria
- ≥18 years old
- Naive to antiretroviral therapy
- CD4+ ≥200 cells/mm³

Exclusion Criteria
- Positive for hepatitis B
- ALT ≥5×ULN
- Creatinine clearance <50 mL/min

Qualification for maintenance
- HIV-1 RNA <50 c/mL between Week 4 and Day 1

Comparable Response Across Arms
Week 96 HIV-1 RNA <50 c/mL by Snapshot (ITT-ME)
New Antiretrovirals – Coming Soon

• Doravirine
 – Randomized double blind comparison to DRV/r
 • 383 per arm median CD4 approximately 425 cells/mm³
 • 84% vs. 80% at 48 weeks – no resistance in DRV/r arm, one in DOR arm
 – Randomized double-blind comparison to EFV (both FDC TDF/FTC)
 • 364 per arm, mean CD4 approximately 420 cells/mm³
 • 84% vs. 81% at 48 weeks, less NNRTI resistance (1.6% vs. 3.3%)
 • Fewer drug-related AE, less rash, significantly less neuropsychiatric events

• Single tablet Protease inhibitor – DRV/cobi/TAF/FTC
 – Randomized open-label maintenance vs. continued boosted PI in suppressed patients 24 week data (N = 1149)
 • 96.3% vs 95.5% with rare virologic failure (0.3 vs. 0.5%), no resistance

ANTIRETROVIRAL THERAPY – NEW STUDIES OF APPROVED AGENTS

Tsepamo 2-year analysis: EFV/TDF/FTC, the first-line WHO recommended regimen, is safer than older ART regimens in pregnancy

Zash et al. CROI 2017

Birth Outcomes with ART in Botswana: Tsepamo
Tsepalmo: Birth Outcomes in Botswana When Initiating First-line DTG vs EFV in Pregnancy

- Prospective cohort study in HIV-infected women initiating ART with EFV/FTC/TDF vs DTG/FTC/TDF while pregnant (N = 5438)

Adverse Birth Outcomes (ABO), n (%)

<table>
<thead>
<tr>
<th></th>
<th>DTG (n = 845)</th>
<th>EFV (n = 4593)</th>
<th>aRR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>34 (4.0)</td>
<td>103 (2.2)</td>
<td>1.0 (0.9-1.1)</td>
</tr>
<tr>
<td>Severe</td>
<td>30 (3.6)</td>
<td>100 (2.2)</td>
<td>1.0 (0.8-1.2)</td>
</tr>
<tr>
<td>Neurocortical death</td>
<td>11 (1.3)</td>
<td>60 (1.3)</td>
<td>1.0 (0.7-1.6)</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>149 (17.8)</td>
<td>35 (4.2)</td>
<td>1.0 (0.8-1.1)</td>
</tr>
<tr>
<td>SGA (< 10th percentile weight)</td>
<td>156 (18.7)</td>
<td>51 (6.1)</td>
<td>1.0 (0.9-1.2)</td>
</tr>
<tr>
<td>Very SGA (< 3rd percentile weight)</td>
<td>51 (6.1)</td>
<td>302 (6.7)</td>
<td>0.9 (0.7-1.2)</td>
</tr>
</tbody>
</table>

*For DTG vs EFV; adjusted for maternal age, education, gravida.

- Few first-trimester ART exposures (DTG, n = 116; EFV, n = 396)
- Only 1 major congenital abnormality observed (skeletal dysplasia in EFV-exposed group)
- Investigators concluded ABO risks comparable when initiating first-line DTG vs EFV in pregnancy.
Snapshot Outcomes at Week 48 (Pooled)

Virologic outcomes
- DTG + RPV (n=513)
- CAR (n=511)

Adjusted treatment difference (95% CI)
- Adjusted for age and second 3rd agent.

Percentage-point difference
- DTG + RPV is non-inferior to CAR with respect to snapshot in the ITT-E population (<50 c/mL) at Week 48.

DAWNING Study – Dolutegravir in Second Line

- Open-label randomized noninferiority phase IIIb study
- **Randomization**
- Week 24 interim analysis
- Week 48 primary analysis
- Week 52

Key eligibility criteria:
- On first-line 2 NRTIs + NNRTI regimen for ≥6 months, failing virologically (HIV-1 RNA ≥400 c/mL on 2 occasions); no primary viral resistance to PIs or INSTIs
- Stratification: by HIV-1 RNA (≤ or >100,000 copies/mL), number of fully active NRTIs in the investigator-selected study background regimen (2 or <2)

Primary endpoint:
- Proportion with HIV-1 RNA <50 c/mL at Week 48 using the FDA snapshot algorithm (12% noninferiority margin)

Similar result regardless of BL VL, CD4 or # of active NRTIs

Snapshot Outcomes at Week 24:

ITT-E and PP Populations

Virologic outcomes
- DTG + 2 NRTIs
- LPV/RTV + 2 NRTIs

Treatment differences (95% CI)
- Similar result regardless of BL VL, CD4 or # of active NRTIs.
Snapshot Outcomes at Week 24: ITT-E

<table>
<thead>
<tr>
<th></th>
<th>DTG + 2 NRTIs (n=312)</th>
<th>LPV/r + 2 NRTIs (n=312)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virologic response (%)</td>
<td>82 (25)</td>
<td>69 (22)</td>
</tr>
<tr>
<td>Virologic nonresponse (%)</td>
<td>12 (4)</td>
<td>25 (8)</td>
</tr>
<tr>
<td>Data in window not below <50 c/mL (%)</td>
<td>10 (3)</td>
<td>21 (7)</td>
</tr>
<tr>
<td>Changes in ART (%)</td>
<td>1 (0.3)</td>
<td>4 (1.3)</td>
</tr>
<tr>
<td>Discontinued study due to AE or death (%)</td>
<td>1 (0.3)</td>
<td>4 (1.3)</td>
</tr>
<tr>
<td>Discontinued study for other reasons (%)</td>
<td>4 (1.3)</td>
<td>4 (1.3)</td>
</tr>
<tr>
<td>Virologic data during window but on study (%)</td>
<td>1 (0.3)</td>
<td>4 (1.3)</td>
</tr>
</tbody>
</table>

8 vs. 24 with confirmed VF – no PT on DTG arm developed new resistance, 3 on LPV/r developed NRTI resistance.

ARS Question #2

- Switching to dolutegravir monotherapy in patients on combination ART with suppressed HIV RNA
 1. Results in rapid virologic failure
 2. Results in low level viremia in a minority of patients but no resistance emergence
 3. Results in low level viremia in a minority of patients with integrase inhibitor resistance emerging in some patients
 4. Shows sustained virologic suppression similar to continued therapy
 5. Unsure
104 patients on cART – initially randomized to immediate switch to DTG mono-therapy or delayed switch after 24 weeks.

In the concurrent control group on cART, VF was observed significantly less (3/152 vs 8/96, p=0.03). Endpoint > 200 c/mL

Comprehensive Assessment of Resistance Mutations Selected by Dolutegravir (DTG) in Subjects Failing DTG-Monotherapy after Switching from other Therapies (Redomo Study)

Blanco et al CROI 2017

- 122 patients from 3 sites switched to DTG mono-therapy – 11 had virologic failure
- In 5 of 11 DTG was their first INSTI. And 8 of 11 were suppressed > 3 years
- Adherence was less than 95% in 4 of 11
- Weeks (median, IQR) from VF until GRT: 5 (3-14)

Table 1: Adherence and Viral Load Data

<table>
<thead>
<tr>
<th>Pt code</th>
<th>Prior IsSTI without VF</th>
<th>Weeks UVL before DTG-M</th>
<th>Baseline VL</th>
<th>VLs on DTG-M</th>
<th>ADH</th>
<th>Weeks to VF</th>
<th>VL at VF</th>
<th>Weeks to GRT</th>
<th>VL at GRT</th>
<th>First IN</th>
<th>GRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B001</td>
<td>None</td>
<td>768</td>
<td><37</td>
<td>330</td>
<td>98% (PC)</td>
<td>8</td>
<td>330</td>
<td>8</td>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B002</td>
<td>RAL (LLV)</td>
<td>86</td>
<td>86 (prior 71,51)</td>
<td>80 (16), 171 (18), 122 (32), 3228 (48)</td>
<td>98% (PC)</td>
<td>16</td>
<td>80</td>
<td>32</td>
<td>122</td>
<td>118R</td>
<td></td>
</tr>
<tr>
<td>B003</td>
<td>None</td>
<td>312</td>
<td><37</td>
<td>26180</td>
<td>50% (PC)</td>
<td>20</td>
<td>26180</td>
<td>28</td>
<td>6014</td>
<td>148K,138K</td>
<td></td>
</tr>
<tr>
<td>B004</td>
<td>RAL (LLV/GRT:WT)</td>
<td>12</td>
<td>249 (prior <37)</td>
<td>123 (12), 1350 (24)</td>
<td>82% (PC)</td>
<td>0</td>
<td>123</td>
<td>32</td>
<td>22170</td>
<td></td>
<td>92Q,155H</td>
</tr>
<tr>
<td>B007</td>
<td>EGV</td>
<td>240</td>
<td><37</td>
<td>57 (52), 51 (64), <37 (88)</td>
<td>100% (PC)</td>
<td>52</td>
<td>57</td>
<td>64</td>
<td>57</td>
<td></td>
<td>97A,155H</td>
</tr>
<tr>
<td>B008</td>
<td>None</td>
<td>480</td>
<td><50</td>
<td>190 (32), 1350 (36), 40000 (40)</td>
<td>88% (PC)</td>
<td>32</td>
<td>190</td>
<td>36</td>
<td>1350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M001</td>
<td>RAL</td>
<td>232</td>
<td>21</td>
<td>55 (2), 168 (13), 239 (15)</td>
<td>60% (SQ)</td>
<td>0</td>
<td>55</td>
<td>16</td>
<td>239</td>
<td></td>
<td>148R,140S</td>
</tr>
<tr>
<td>M002</td>
<td>None</td>
<td>228</td>
<td><20</td>
<td>538 (24), 11000 (28)</td>
<td>100% (SQ)</td>
<td>24</td>
<td>538</td>
<td>29</td>
<td>11000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C001</td>
<td>EVG</td>
<td>20</td>
<td><50</td>
<td>306 (24), 583 (28)</td>
<td>100% (SQ)</td>
<td>24</td>
<td>306</td>
<td>24</td>
<td>306</td>
<td></td>
<td>118R</td>
</tr>
<tr>
<td>B005</td>
<td>RAL, EGV</td>
<td>432</td>
<td><37</td>
<td>179 (13), 71 (14), 56 (16)</td>
<td>98% (PC)</td>
<td>13</td>
<td>179</td>
<td>14</td>
<td>71</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>B006</td>
<td>None</td>
<td>172</td>
<td><37</td>
<td>355 (72), 1355 (76), 1397 (80), <37 (92)</td>
<td>100% (PC)</td>
<td>72</td>
<td>355</td>
<td>76</td>
<td>1355</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

HIV AND COMPLICATIONS
ARS Question #3

- Myocardial infarctions in the HIV positive population are predominantly due to:
 1. Low nadir CD4 cell count with persistent inflammation
 2. Use of abacavir
 3. Typical cardiovascular risk factors (e.g. smoking, hypertension and lipid abnormalities)
 4. Unsure
NA-ACCORD: Contributions to MI Risk in HIV+ Subjects

Population attributable fractions and 95% confidence intervals for traditional and HIV-related factors, and hepatitis C virus infection, NA-ACCORD (1 Jan 2000 – 31 Dec 2013).

Population attributable fractions have been adjusted for all the risk factors in the figure, as well as age, sex, race, HIV transmission risk, diabetes, and stage 4 chronic kidney disease.

Population attributable traction (PAF)

HIV PREVENTION

• IPERGAY – subanalysis
 – Suggests that intermittent PrEP is effective in MSM with less frequent intercourse
 – 6 infections with PCB vs. none on TDF/FTC
 – Median 5 episodes of sex per month, 9.5 TDF/FTC pills per month

• HPTN 077 – Cabotegravir LA in low risk Men and Women
 – Every 8 week cabotegravir LA met PK targets and was safe
 – Comparative trials vs. TDF/FTC in high risk MSM and women is sub-Saharan Africa are underway and about to start (respectively).

• MK-8591 (NRTTI)
 – Effective protection in a macaque challenge model

Anton et al IAS 2017 and Landovitz et al and Markowitz et al IAS 2017
Acknowledgements

• Beatriz Grinsztejn
• Bach-Yen Nguyen
• Ken Atuff
• Mark Warshberg
• David Piontkowski

• Sonia Napravnik
• Thibaut Deyde
• Chuck Fields
• Anton Pozniak
• Kathleen Squires

Question and Answer Period

• Use the microphones or Q-cards for questions
• If you are participating via the live webcast, please email your questions to RWCCwebcast@iasusa.org