Perspectives

New Insights Into HCV Replication: Potential Antiviral Targets 117
Charles M. Rice, PhD

History: Roadblocks to Hepatitis C Virus Research • What We Have Learned: Viral Entry and Spread • What We Have Learned: HCV Translation and Replication • HCV Assembly and Release • Host Targets for Antiviral Drug Development

Advanced Liver Disease: What Every Hepatitis C Virus Treater Should Know 121
Kenneth E. Sherman, MD

Hepatitis C Virus-Related Hepatic Fibrosis • Cirrhosis and Hepatic Decompensation • Management of Ascites and its Complications • Varices • Hepatic Encephalopathy • Liver Transplantation

Review

When Patients Cannot Take Pills: Antiretroviral Drug Formulations for Managing Adult HIV Infection 126
Chessa R. Nyberg, PharmD, Brooke Y. Patterson, PharmD, and Meghan M. Williams, PharmD

Introduction • Current Challenges in Bioavailability of Antiretrovirals • Search Methods and Results • Discussion
Topics in Antiviral Medicine™

Topics in Antiviral Medicine (formerly Topics in HIV Medicine) is published by the IAS–USA. This journal is intended to be a resource for physicians and other health care practitioners who are actively involved in the care of patients with HIV or other viral infections.

Editorial Policy
The views and opinions expressed in this journal are those of the contributors and do not necessarily reflect the views or recommendations of the IAS–USA. Topics in Antiviral Medicine is supported through educational grants from several commercial companies that are committed to supporting CME about HIV and other viral infections. In the interest of an objective, balanced, and scientifically rigorous publication, the IAS–USA seeks funding from companies with no input or control over the journal content or the selection of contributors.

All authors and contributors provide disclosures of financial interests, and this information is available at the end of each article.

This journal may contain information about the investigational uses of drugs or products that are not approved by the US Food and Drug Administration. Please consult full prescribing information before using any medication or product mentioned in Topics in Antiviral Medicine.

Financial Disclosures
Financial disclosures for members of the IAS–USA Board of Directors and the Editorial Board of Topics in Antiviral Medicine are available online at www.iasusa.org.

Copyrights and Reprints
The contents of Topics in Antiviral Medicine are protected by copyright. We welcome reference to and use of portions of this journal; however, we do require that permission to reproduce or use any part of the journal be obtained from the IAS–USA. In the case of reprinted or adapted materials where the IAS–USA does not own the copyright, permission to reproduce these materials must be obtained directly from the original source. For more information about reprints, please send an e-mail to topics2011@iasusa.org.

Subscription Information
Topics in Antiviral Medicine is published 4 to 6 times a year. To obtain a complimentary subscription or notify the IAS–USA of a change in address, please contact the IAS–USA at the address listed below or use the Subscription Request/Address Change form at the back of this issue.

Correspondence
Topics in Antiviral Medicine welcomes editorial correspondence. Address letters to:
Editor, Topics in Antiviral Medicine
IAS–USA
425 California Street, Suite 1450
San Francisco, CA 94104-2120
Phone: (415) 544-9400
Fax: (415) 544-9401
Web site: http://www.iasusa.org
E-mail: topics2011@iasusa.org

On the Web
Current and previous issues of Topics in Antiviral Medicine (as well as Topics in HIV Medicine) are available online at www.iasusa.org.
ISSN 2161-5861 (Print)
ISSN 2161-5853 (Online)
Printed in USA on acid-free paper
©2011 IAS–USA

Grant Support
The 14th annual Clinical Conference for the Ryan White HIV/AIDS Program was supported by the US Department of Health and Human Services Administration, HIV/AIDS Bureau.

Support for the 2011 Improving the Management of HIV Disease continuing medical education program, including preparation of this issue, is from the following: Gilead Sciences, Inc; Merck & Co, Inc; Bristol-Myers Squibb; Tibotec Therapeutics; Abbott Laboratories; and ViiV Healthcare.

Support for the 2011 Management of Hepatitis C Virus in the New Era: Small Molecules Bring Big Changes continuing medical education program, including preparation of this issue, is from the following: Abbott Laboratories; Merck & Co, Inc; and Vertex Pharmaceuticals.
Topics in Antiviral Medicine™

A publication of the IAS–USA

Perspectives

New Insights Into HCV Replication: Potential Antiviral Targets
Charles M. Rice, PhD

Advanced Liver Disease: What Every Hepatitis C Virus Treater Should Know
Kenneth E. Sherman, MD

Review

When Patients Cannot Take Pills: Antiretroviral Drug Formulations for Managing Adult HIV Infection
Chessa R. Nyberg, PharmD, Brooke Y. Patterson, PharmD, and Meghan M. Williams, PharmD

Announcements

Cases on the Web – Online CME Activities
Continuing Medical Education Credit
Subscription Request/Address Change Form
Guidelines for Authors and Contributors

114
115
132
Inside Back Cover
Leveraging the eventual results to improve care. Measures, determining data collection methods, and using and providing guidelines and advice on selecting performance measures, determining data collection methods, and using and leveraging the eventual results to improve care.

NEW Quality Measures in HIV Care
Kathleen Clanon, MD, and Steven Bromer, MD
CME Credit Available: 1.75 AMA PRA Category 1 Credits™
Level: Advanced

Choosing a set of quality of care measures and a strategy for using them is an investment in time and resources—the resulting information can be either a powerful tool for improving care or a useless paper exercise. Dr Kathleen Clanon and Dr Steven Bromer provide guidelines and advice on selecting performance measures, determining data collection methods, and using and leveraging the eventual results to improve care.

NEW Initiation of Antiretroviral Therapy in Treatment-Naive HIV-Infected Patients
Greer A. Burkholder, MD
CME Credit Available: 1.75 AMA PRA Category 1 Credits™
Level: Advanced

What impact does the timing of antiretroviral therapy (ART) initiation have on the prognosis of HIV-infected patients? Dr Greer Burkholder discusses the influence of CD4+ cell count, plasma HIV RNA level, AIDS-related and non–AIDS-related comorbidities, pregnancy, and patient willingness to take lifelong medications. Because of the evolving nature of guidelines and evidence regarding timing of ART, HIV practitioners need to update their knowledge on this topic regularly.

NEW New Treatments for Hepatitis C Virus Infection
Melissa K. Osborn, MD
CME Credit Available: 1.5 AMA PRA Category 1 Credits™
Level: Advanced

Dr Melissa Osborn explains how the 2 new HCV protease inhibitors, telaprevir and boceprevir—direct-acting antiviral agents that inhibit viral replication—will affect therapy for treatment-naive and treatment-experienced patients with HCV infection. Her presentation describes the effects of telaprevir and boceprevir on sustained virologic response (SVR) rates, and includes response-guided treatment algorithms.

NEW Smoking Cessation
Steven A. Schroeder, MD and Margaret Meriwether, PhD
CME Credit Available: 1.0 AMA PRA Category 1 Credits™

What are the obstacles to smoking cessation, and how can they be overcome? Dr Steven Schroeder and Dr Margaret Meriwether discuss the medical practitioner’s role in assisting HIV-infected patients with smoking-cessation-related issues such as weight gain and fatalism. They introduce treatment modalities that increase the likelihood of a successful quit attempt.

NEW Approaching the HIV-Infected Patient With Addiction
R. Douglas Bruce, MD, MA, MSc
CME Credit Available: 1.75 AMA PRA Category 1 Credits™
Level: Advanced

Substance-use disorders are prevalent in HIV clinical settings. Impaired judgment due to ongoing substance use can mean increased sexual risk taking, which further contributes to HIV infection rates and incidence of other sexually transmitted diseases. Dr R. Douglas Bruce describes how screening, evaluation, and a compassionate approach to patient care can be combined to provide effective treatment.

Diagnosis and Treatment Options for Acute HIV Infection
Elizabeth Reddy, MD, and Charles B. Hicks, MD
CME Credit Available: 1.75 AMA PRA Category 1 Credits™
Level: Advanced

“Aacute” HIV infection generally refers to the phase of rapidly evolving HIV antibody test results when viral replication is at its peak. “Primary” HIV infection often refers to the entire period from transmission through the first year of infection. Despite its perceived importance, diagnosing primary or acute HIV infection remains challenging for many reasons. Health care practitioners who are likely to come in contact with newly infected persons should be versed in recommendations and options for diagnosis and treatment. Dr Elizabeth Reddy and Dr Charles B. Hicks discuss important concepts in the diagnosis of and treatment options for acute HIV infection.

Dermatologic Complications of HIV Infection
Jennifer Cafardi, MD, and John Cafardi, MD
CME Credit Available: 2.5 AMA PRA Category 1 Credits™
Level: Advanced

A variety of common skin conditions often develop in HIV-infected patients that may be difficult to treat and may provide clues to the patients’ underlying immune status. Three major categories of skin conditions are observed: dermatoses specific to HIV infection, common dermatoses that occur with greater frequency in HIV infection and AIDS, and less common conditions that have been reported in association with HIV. Dr Jennifer Cafardi and Dr John Cafardi discuss a selection of some common and some serious cutaneous diseases and the options for treating them.
The following article in this issue is associated with CME credit:

This journal-based continuing medical education (CME) activity provides a review of hepatitis C virus–related liver disease. To complete the activity, the learner is instructed to:
• Read the article (see pages 121-125)
• Review a selection of the references
• Reflect on how the information might be applied to the clinical practice
• Take the posttest
• Complete the CME claim form and send it to the IAS–USA office.

Upon completion of this activity, learners will be able to describe the principles of managing HCV-related liver disease, including staging and monitoring for complications.

The IAS–USA is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

The IAS–USA designates this journal-based CME activity for a maximum of 1.5 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

This activity is intended for physicians involved in the care of patients infected with HIV or other viruses. It is also relevant to nurse practitioners, physician assistants, nurses, and other health professionals who provide care for people with viral diseases.

IAS–USA policy requires that the IAS–USA resolve any real or apparent conflict of interest that may influence the development, content, or delivery of its educational activity prior to the activity’s being delivered to learners. The IAS–USA has several mechanisms for resolving conflicts of interest in educational activities. If the conflict of interest cannot be resolved through these mechanisms, the party will be removed from the activity.

Dr Sherman has served as a consultant or scientific advisor to Boehringer Ingelheim Pharmaceuticals, Inc, Genentech, Inc, GlaxoSmithKline, Merck & Co, Inc, Regulus Therapeutics Inc, ScicClone Pharmaceuticals, Three Rivers Pharmaceuticals, and Vertex Pharmaceuticals, Inc. He has served on data and safety monitoring boards and end-point adjudication committees for MedPace, Inc, Pfizer Inc, and Tibotec Therapeutics.

Check the box next to the single best answer to each of the questions below. To earn CME credit, you must receive a passing score of 80% or more correct.

1. Hepatocellular carcinoma (HCC) develops in what percentage of patients with HCV-related cirrhosis each year?
 - A. 0.5%
 - B. 1% - 2%
 - C. 7% - 10%
 - D. About 15%

2. A reliable diagnosis of HCV-related advanced fibrosis is made using:
 - A. Ultrasound
 - B. Abdominal computed tomography
 - C. Liver biopsy

3. Which statement about liver fibrosis progression rates in HCV-infected patients is correct?
 - A. Progression rates are predictable and linear
 - B. HIV coinfection does not influence progression rate
 - C. Approximately 10% of HCV-infected patients will have fibrosis that progresses to severe cirrhosis over 20 or more years
 - D. Progression from compensated cirrhosis to decompensated liver disease occurs in about 5% patients per year

4. Which statement about diagnostic tapping of ascites is correct?
 - A. The patient should sit upright at a 90-degree angle during the procedure
 - B. Bacterial cultures on the ascitic fluid should be performed using bedside culture bottles
 - C. Bacterial cultures on the ascitic fluid should be performed by using collection tubes that are sent to the laboratory
 - D. Albumin replacement is required for all patients after tapping is complete

5. Which of the following is the most appropriate treatment for ascites and its complications?
 - A. 160 mg furosemide with 4 mg bumetanide, taken daily
 - B. Sodium restriction to maximum of 2 g/day
 - C. Insertion of a chest tube in cases of hepatic hydrothorax
 - D. Repeated large-volume paracentesis with a 4.0-inch, medium-gauge needle

This CME activity is offered from September 15, 2011, to September 15, 2012. Participants who receive a passing score on the posttest and submit the registration and evaluation forms are eligible to receive credit. Physicians (MDs, DOs, and international equivalents) may receive CME credit for completing this activity. Nonphysician health care practitioners will receive a certificate of attendance.
To receive CME credit, please complete the posttest, participant information, and evaluation forms and return all to the IAS–USA.

Participant Information

Number of CME credits I am claiming (maximum 1.5): __

<table>
<thead>
<tr>
<th>First Name</th>
<th>Mi</th>
<th>Last Name</th>
<th>Degree or License (MD, RN, PA, none, etc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Address (Please check one: ___ Home ___ Work)

<table>
<thead>
<tr>
<th>Address 2nd Line</th>
<th>Institution or Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

City __________________ State/Province __________________

Postal Code __________________ Country __________________

Degree or License (MD, RN, PA, none, etc)

Institution or Organization

Telephone (___Home ___Work) Facsimile

E-mail address to receive CME certificate (___Home ___Work)

The amount of time (in hours) I spent on reading the article, reviewing the references, reflecting on how the information might be applied to the practice, and taking the posttest was:

☐ ≤ 1 ☐ 1.5 ☐ 2 ☐ 3 ☐ other _____

Evaluation

Please complete the following evaluation form for the *Topics in Antiviral Medicine* article for which you are currently claiming CME credit:

<table>
<thead>
<tr>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content and presentation of article ○ ○ ○ ○ ○

Value in fulfilling learning objectives ○ ○ ○ ○ ○

Value to your practice/responsibility ○ ○ ○ ○ ○

Freedom from commercial bias ○ ○ ○ ○ ○

Please list 3 specific measurable changes you will make in your practice based on the information presented in the article:

1. __

2. __

3. __

Which parts of this journal-based CME activity could have been improved?

__

__

Other comments (please feel free to comment on any aspect of *Topics in Antiviral Medicine*):

__

__

Fax or mail this page along with the completed posttest to:

IAS–USA
425 California Street, Suite 1450
San Francisco, CA 94104-2120
Fax: (415) 544-9401

116
Perspective

New Insights Into HCV Replication: Potential Antiviral Targets

The ultimate goal of hepatitis C virus (HCV) treatment is the eradication of the virus. Ongoing research continues to add to knowledge of the HCV life cycle, revealing new potential viral and host targets for the development of therapy. Understanding of HCV was initially hampered by the inability to achieve viral replication in cell culture. Advances such as the HCV replicon and complete cell culture systems, however, have permitted rapid growth in knowledge and accelerated testing of candidate antiviral agents. Among potential targets are viral entry factors, including scavenger receptor type B1 (SR-B1) and CD81, as well as neutralizing antibodies against the viral glycoproteins. Popular targets related to translation and replication are the NS3/4A protease (inhibited by telaprevir and boceprevir) and the NS5B polymerase, as well as the NS2/3 autoprotease, the NS3 helicase, and nonenzymatic targets such as NS4B and NS5A proteins. Host targets are also available, including microRNAs and cyclophilins. This article summarizes a presentation by Charles M. Rice, PhD, at the IAS–USA live continuing medical education course, Management of Hepatitis C Virus in the New Era: Small Molecules Bring Big Changes, held in New York City in April 2011.

History: Roadblocks to Hepatitis C Virus Research

The development of antiviral agents effective against hepatitis C virus (HCV) was hindered for many years by the inability to achieve viral replication in laboratory cell cultures and by the absence of a small-animal model for infection. These roadblocks slowed both the understanding of the HCV life cycle and the investigation of potential antiviral drugs.

HCV was discovered in 1989 as the major causative agent of non-A, non-B hepatitis.1 This positive-strand RNA virus has a genome approximately 9.6 kilobases (kb) in length. It encodes a single long polyprotein that is processed into 10 individual proteins by viral enzymes (NS2/3 and NS3/4A) and cellular enzymes (signal peptidase and signal peptide peptidase) (Figure 1).2–4 The NS3/4A serine protease, which cleaves the viral polyprotein at 4 sites, is the target of the only direct-acting HCV isolates approved by the US Food and Drug Administration (FDA) to date—telaprevir and boceprevir.

It was almost a decade after the discovery of HCV that the first infectious complementary DNA (cDNA) clone was constructed. Full-length viral RNA transcribed from the cDNA in vitro was capable of establishing infection in chimpanzees but, somewhat paradoxically, could not replicate in cell culture. A major breakthrough in the development of cell-based systems was the construction of the HCV replicon in 1999.5 In the initial version, the genome of a genotype-1b HCV isolate was modified to contain only the key viral RNA replication genes and a neomycin resistance marker and could not replicate in cell culture. Advances such as the HCV replicon and complete cell culture systems, however, have permitted rapid growth in knowledge and accelerated testing of candidate antiviral agents. Among potential targets are viral entry factors, including scavenger receptor type B1 (SR-B1) and CD81, as well as neutralizing antibodies against the viral glycoproteins. Popular targets related to translation and replication are the NS3/4A protease (inhibited by telaprevir and boceprevir) and the NS5B polymerase, as well as the NS2/3 autoprotease, the NS3 helicase, and nonenzymatic targets such as NS4B and NS5A proteins. Host targets are also available, including microRNAs and cyclophilins. This article summarizes a presentation by Charles M. Rice, PhD, at the IAS–USA live continuing medical education course, Management of Hepatitis C Virus in the New Era: Small Molecules Bring Big Changes, held in New York City in April 2011.

History: Roadblocks to Hepatitis C Virus Research

The development of antiviral agents effective against hepatitis C virus (HCV) was hindered for many years by the inability to achieve viral replication in laboratory cell cultures and by the absence of a small-animal model for infection. These roadblocks slowed both the understanding of the HCV life cycle and the investigation of potential antiviral drugs.

HCV was discovered in 1989 as the major causative agent of non-A, non-B hepatitis.1 This positive-strand RNA virus has a genome approximately 9.6 kilobases (kb) in length. It encodes a single long polyprotein that is processed into 10 individual proteins by viral enzymes (NS2/3 and NS3/4A) and cellular enzymes (signal peptidase and signal peptide peptidase) (Figure 1).2–4 The NS3/4A serine protease, which cleaves the viral polyprotein at 4 sites, is the target of the only direct-acting HCV isolates approved by the US Food and Drug Administration (FDA) to date—telaprevir and boceprevir.

It was almost a decade after the discovery of HCV that the first infectious complementary DNA (cDNA) clone was constructed. Full-length viral RNA transcribed from the cDNA in vitro was capable of establishing infection in chimpanzees but, somewhat paradoxically, could not replicate in cell culture. A major breakthrough in the development of cell-based systems was the construction of the HCV replicon in 1999.5 In the initial version, the genome of a genotype-1b HCV isolate was modified to contain only the key viral RNA replication genes and a neomycin resistance marker and could not replicate in cell culture. Advancements such as the HCV replicon and complete cell culture systems, however, have permitted rapid growth in knowledge and accelerated testing of candidate antiviral agents. Among potential targets are viral entry factors, including scavenger receptor type B1 (SR-B1) and CD81, as well as neutralizing antibodies against the viral glycoproteins. Popular targets related to translation and replication are the NS3/4A protease (inhibited by telaprevir and boceprevir) and the NS5B polymerase, as well as the NS2/3 autoprotease, the NS3 helicase, and nonenzymatic targets such as NS4B and NS5A proteins. Host targets are also available, including microRNAs and cyclophilins. This article summarizes a presentation by Charles M. Rice, PhD, at the IAS–USA live continuing medical education course, Management of Hepatitis C Virus in the New Era: Small Molecules Bring Big Changes, held in New York City in April 2011.

Figure 1. Delineation of hepatitis C virus (HCV) genome organization and polyprotein processing. Schematic shows structural proteins, nonstructural proteins, and enzymatic activities required for cleaving the polyprotein. Adapted from Bartenschlager et al.,2 Grakoui et al.,3 and Hijikata et al.4

Dr Rice is Maurice R. and Corinne P. Greenberg professor at the Rockefeller University in New York.
HCV cell culture system was developed. The breakthrough came when an HCV genotype 2a clone, derived by Takaji Wakita from a rare case of acute fulminant HCV infection (Japanese fulminant hepatitis 1 [JFH-1] strain), was shown to initiate efficient replication in hepatoma cells without the need for adaptive mutations. Remarkably, electroporation of JFH-1 RNA into cells also led to the release of filterable infectious particles, meeting the classic criterion for a virus. These virus particles were capable of infecting naive hepatoma cells, chimpanzees, and a mouse model harboring human hepatocytes. Both animal models produced virus particles that were still infectious in cell culture. Thus, almost 20 years after the discovery of the virus, all steps in the HCV life cycle could finally be recapitulated in the laboratory.

What We Have Learned: Viral Entry and Spread

HCV is an enveloped virus that displays 2 glycoproteins on its surface: E1 (up to 6 glycosylation sites), the exact role of which is unknown, and E2 (11 glycosylation sites), which appears to be responsible for receptor binding. The proteins are embedded in a lipid bilayer surrounding a nucleocapsid composed of core protein and the genomic RNA. Surprisingly, the virus is often associated with serum lipoproteins (ie, very-low-density and low-density lipoproteins), which are thought to play crucial roles in entry, virus assembly, and possibly in immune evasion. The association of lipoproteins and virus results in material that is heterogeneous in terms of buoyant density; particles with the lowest density are not entirely clear, as so far only SR-B1 (SR-B1), CD81, and tight-junction proteins CLDN-1 (claudin-1) and OCLN (occludin) are essential for uptake. The restriction of HCV to human and chimpanzee hepatocytes appears to be related to the characteristics of the CD81 and OCLN orthologs.

The current model for initial infection posits that the virus enters the liver through the bloodstream, passing through the endothelium and the space of Disse. The particle then interacts with GAG, LDLR, SR-B1, and CD81 on the basolateral surface of the hepatocyte, followed by movement to tight junctions formed by CLDN-1 and OCLN (Figure 2). The mechanisms by which HCV utilizes all 4 entry factors are not entirely clear; as so far only SR-B1 and CD81 have been shown to interact directly with the E2 glycoprotein. It is also not completely understood to what degree spread through the liver occurs via virus released into circulation versus by cell-to-cell transmission between closely connected hepatocytes.

The processes of viral entry and spread are potential drug targets, although uptake inhibitors might best be used in combination with other antiviral agents inhibiting replication. Such combinations might protect cured or uninfected cells and could delay spread of resistant variants. Furthermore, inhibition of entry might prevent reinfec-

What We Have Learned: HCV Translation and Replication

Following translation and processing of the 10 viral proteins, all of the gene products remain associated with intracellular membranes (Figure 3). This is a feature common to all positive-strand RNA viruses and is not yet well understood. The HCV nonstructural proteins, which include NS3, NS4A, NS4B, NS5A, and NS5B, comprise the RNA replication machinery. The membrane-associated replicase works by copying incoming genome RNA into a negative-strand intermediate, which is then used to generate additional positive-strand RNAs for subsequent rounds of translation and packaging into virus particles. The replication factories use microtubules to move around the cell as they function, coalescing into vesicular structures termed the membranous web.

The most popular targets for the development of HCV antiviral drugs have been 2 enzymatic components of
the replicate: the NS3/4A serine protease and the NS5B RNA-dependent RNA polymerase. These are attractive in part because both are enzymes required for HCV replication. In addition, their functions are amenable to the development of biochemical assays for inhibitor screening, an important consideration especially in the era before cell-based systems. Other enzymatic targets have been less well explored, including the NS2/3 autoprotease, which mediates a single cleavage in the polyprotein, and an RNA helicase encoded in the C-terminal two-thirds of NS3, which appears to unwind RNA structures during replication.

A number of nonenzymatic targets have also received considerable attention. The NS4B protein may scaffold the RNA replication machinery and is sufficient to form the membranous web. It is the target of several compounds recently identified in novel biochemical assays. The NS5A protein is involved in both RNA replication and infectious virus assembly. Despite these important roles, the protein was initially an unpopular target because it has no known enzymatic activity. Recently, however, a compound acting on NS5A, BMS-790052, has emerged as one of the most potent and broadly active inhibitors of HCV replication observed to date. In a study by Gao and colleagues, the drug exhibited 50% effective concentration (EC50) values of 9 pM to 146 pM against replicons and infectious HCV in culture. Early-phase clinical trials revealed promising pharmacokinetics and a rapid decrease in HCV RNA levels.10

Host factors involved in translation and replication present an intriguing alternative strategy for drug design. MicroRNAs are small noncoding RNAs that fine-tune cellular gene expression, usually by sequestering an mRNA or inducing template turnover in a highly selective manner. In the liver, microRNA-122 (miR-122) is responsible for regulating the expression of approximately 200 cellular genes, including those involved in cholesterol biosynthesis and lipid metabolism. Interestingly, miR-122 was found to bind to 2 short recognition sequences near the 5' end of the HCV genome. Rather than downregulating HCV gene expression, however, miR-122-binding augments viral RNA replication. Recently, Lanford and colleagues have shown that a stabilized “locked nucleic acid” antagonist of miR-122 can be efficiently delivered to the livers of HCV-infected chimpanzees. Delivery of the antagonist reduced HCV viremia by several orders of magnitude, with the effect persisting for several weeks after treatment was stopped.11

HCV Assembly and Release

Thus far, there are relatively few data on how virus assembly and release might be inhibited. In addition to the viral structural proteins (core, E1, and E2), the nonstructural proteins p7, NS2, NS3, and NS5A are required for production of infectious virus. This hints at coordination between the machinery involved in making new copies of the genome RNA and the machinery packaging it into particles.

As mentioned above, HCV particles are typically associated with serum lipoproteins in circulation. In fact, HCV uses the lipoprotein production pathway to assemble viral particles and to move them out of the infected cell. Thus, interfering with lipoprotein components or disrupting the pathways involved in lipoprotein secretion are potential areas for intervention in assembly and release, as well as entry.

Host Targets for Antiviral Drug Development

HCV is dependent on host cells to provide numerous factors for its replication, and there is ongoing discussion about whether viral targets or host targets are optimal for antiviral drug development. Strategies for identifying potential host targets include screening small interfering RNA (siRNA) or short hairpin RNA (shRNA) libraries to identify human genes required for HCV replication. Another strategy is to pursue already-known targets, such as SR-B1 (eg, with anti-SR-B1 antibody), CD81 (eg, with anti-CD81 antibody), lipoproteins (eg, with anti-apolipoprotein E antibody), or microRNAs (eg, with locked nucleic acid compounds). Furthermore, existing pharmacologically active compounds, for example, those potent against other pathogens, can be screened using cell-based systems for inhibiting HCV.

One of the most interesting outcomes of a screen of preexisting drugs was the finding that cyclophilins, which are targeted by cyclosporin A, are required for HCV replication. Cyclophilin A is a cellular peptidyl-prolyl isomerase, which appears to act on the HCV NS5A protein, as well as possibly on...
NS2 and NS5B. It has been shown that nonimmunosuppressive analogues of cyclosporin A, such as the compound Debio 025, can bind cyclophilin A and inhibit HCV replication. Debio 025 was found to markedly reduce HCV viremia in clinical trials when used alone or in combination with pegylated interferon alfa.

Although host factors may be feasible antiviral targets, the debate continues on the benefits of this approach. On the plus side, host proteins present a wide array of strategies; viral targets are limited to 10 proteins and 1 RNA molecule. Drug development time may be reduced by evaluating compounds already known to target host processes relevant to HCV. In addition, host proteins are well conserved. This is in contrast to the huge genetic variability of the virus, which can lead to rapid emergence of resistance. The genetic heterogeneity of HCV can be appreciated when it is considered that approximately 10^{12} viral particles are produced each day in a chronically infected individual. As with HIV and other RNA viruses, replication of HCV is error prone, easily resulting in patients who harbor all single- and double-substitution resistance-associated mutations prior to starting any drug treatment. Agents that act on host targets may also be more potent across the different viral genotypes.

Importantly, inhibiting a host factor is inherently less virus-specific than targeting an HCV protein. Disrupting important roles of a cellular protein could lead to increased side effects. Host factor polymorphisms may also affect drug activity. Ideally, therefore, a combination of host and viral inhibitors will provide a variety of drug regimens appropriate for different patients.

Summary

HCV is a cytoplasmic RNA virus that does not integrate into the host cell DNA, making eradication a seemingly achievable goal. Understanding of the HCV life cycle and potential drug targets has increased considerably over the last decades, and there is now a large number of candidate antivirals in the development pipeline. Very recently, the first direct-acting antiviral drugs were approved in combination with peginterferon alfa and ribavirin. For the near future, a major goal is to develop interferon–free therapies. With peginterferon alfa and ribavirin currently the first direct-acting antiviral drugs were approved in combination with peginterferon alfa and ribavirin. For the near future, a major goal is to develop interferon–free therapies. With peginterferon alfa and ribavirin currently the first direct-acting antiviral

Presented by Dr Rice in April 2011. First draft prepared from transcripts by Matthew Stenger. Edited by Catherine Murray. PhD, in August 2011, and reviewed by Dr. Rice.

Financial Disclosure: Dr Rice has served as a consultant or scientific advisor to Genentech Inc. GlaxoSmithKline. iTherX. Inc. Merck & Co. Inc. and Novartis Vaccines and Diagnostics. He is a major stock shareholder for Apath. LLC. Dr Murray has no relevant financial affiliations to disclose. Her spouse is employed by Novartis.

References

Perspective

Advanced Liver Disease: What Every Hepatitis C Virus Treater Should Know

Identification and treatment of advanced hepatitis C virus (HCV) infection is often challenging. Accurate fibrosis staging can be performed only by liver biopsy. For patients with advanced fibrosis (Metavir score, F3 or F4), progression to decompensated liver disease occurs at a rate of approximately 5% per year and progression to hepatocellular carcinoma occurs at a rate of 1% to 2% per year. Liver decompensation primarily results from altered hepatic blood flow caused by liver scarring and is characterized by ascites and its complications (hepatorenal syndrome, hepatic hydrothorax, and spontaneous bacterial peritonitis), hepatic encephalopathy, bleeding varices, and coagulopathy. Patients with advanced fibrosis need to be regularly monitored for evidence of decompensated disease, and complications need to be aggressively managed. This article summarizes a presentation by Kenneth E. Sherman, MD, at the IAS–USA live continuing medical education course, Management of Hepatitis C Virus in the New Era, held in New York City in April 2011.

Hepatitis C virus (HCV) infection is a curable infectious disease. It is also a liver disease. A critical component of managing HCV-related liver disease is to determine the patient’s severity of liver fibrosis. Patients with advanced fibrosis should be regularly monitored for bleeding varices using esophagogastroduodenoscopy (EGD), and for ascites and hepatocellular carcinoma (HCC) using ultrasound. Complications of liver disease require prompt management and aggressive follow-up. Knowing when to refer patients to a transplant center and doing so in a timely manner is crucial.

Dr. Sherman noted that the basic principles in understanding and managing HCV-related liver disease are as follows:

- Hepatic fibrosis is not reliably diagnosed by ultrasound examination.
- Liver fibrosis rates are not predictable or linear.
- Progression from compensated cirrhosis to decompensated liver disease occurs in 5% of patients per year.
- Hepatocellular carcinoma develops in 1% to 2% of patients with HCV-related cirrhosis each year.

Hepatitis C Virus–Related Hepatic Fibrosis

Reliable diagnosis of HCV-related advanced fibrosis or cirrhosis depends on liver biopsy (Figure 1). Ultrasound techniques may reveal a shrunken liver or evidence of portal hypertension but do not permit visualization of fibrosis or cirrhosis. Cirrhosis is a histologic diagnosis and is often confused with portal hypertension, which results from cirrhosis. However, not all portal hypertension is caused by cirrhosis. The extent of fibrosis is classified into 4 stages using the Metavir schema. In stage 1, fibrous expansion can be observed in some portal areas. In stage 2, fibrous expansion is observed in most portal areas, with occasional portal-to-portal bridging. Stage 3 fibrosis is characterized by fibrous expansion of portal areas with marked bridging, including portal-to-portal and portal-to-central bridging. Stage 4 fibrosis indicates cirrhosis, which is strictly defined as a liver lobule completely surrounded by scarring.

Liver fibrosis progression rates are not predictable or linear. They vary widely among patients with HCV infection, with rates being more rapid.

Dr Sherman is Gould professor of medicine and director of the Division of Digestive Diseases at the University of Cincinnati College of Medicine in Cincinnati, OH.

Figure 1. Progression of liver fibrosis as shown on a series of biopsy specimens and as classified by the Metavir schema. A: Liver with no fibrosis. B: Stage 1, fibrous expansion into some portal areas. C: Stage 2, fibrous expansion in most portal areas, with occasional portal-to-portal bridging. D: Stage 3, fibrous expansion of portal areas with marked bridging, including portal-to-portal and portal-to-central bridging. E: Stage 4, cirrhosis. Adapted with permission from Gregory T. Everson, MD, University of Colorado Denver.
Case: A 48-Year-Old Man with HCV Infection

The patient is a 48-year-old man with HCV infection, a history of 2 years of injection drug use from age 19 years to 21 years, and moderate social alcohol use. The patient presents with fatigue and insomnia, with laboratory evaluation showing alanine aminotransferase (ALT) level of 67 U/L, aspartate aminotransferase (AST) level of 1.5 mg/dL, alkaline phosphatase level of 197 U/L, hemoglobin level of 13.4 gm/dL, platelet count of 111,000/µL, HCV RNA level of 2.7 million IU/mL, and HCV genotype 1b. Right upper quadrant ultrasound shows an echogenic liver consistent with fat or liver disease. Instead of undergoing biopsy for staging of fibrosis, the patient is started on a 3-drug regimen containing pegylated interferon alfa, ribavirin, and a direct-acting antiviral.

After 12 weeks of treatment, virus is undetectable. The patient notes a 10-lb weight gain, and his wife complains that he sometimes appears drunk, though he denies alcohol use. What is the best next step in the treatment of this patient? 1. Prescribe an antidepressant? 2. Reassure the patient that he is experiencing common side effects of interferon alfa therapy? 3. Order a stat ultrasound? 4. Suggest diet and exercise?

Dr Sherman explained that an ultrasound will determine if the weight gain is associated with the development of ascites, and is thus the best next step. Although the severity of fibrosis in this patient is unknown, his workup prior to treatment initiation produced some findings that raise concern over the potential for decompensated liver disease, including a somewhat low platelet level and the presence of fatigue and insomnia. Reversal of sleep patterns is a common very early symptom of hepatic encephalopathy.

Weight gain is not expected in patients receiving interferon alfa; in fact, interferon alfa treatment is more commonly associated with anorexia and weight loss. Ultrasound reveals that the patient has ascites, indicating the presence of advanced liver disease that became decompensated as a result of anti-HCV therapy.

in those with cofactors for progression that include concurrent HIV infection and excessive consumption of alcohol. Overall, some 15% to 33% of HCV-infected patients may exhibit mild or moderate liver fibrosis over the course of 40 or more years, whereas 20% to 33% have disease that progresses to severe cirrhosis or HCC over 20 or more years. Some patients, however, have liver fibrosis that progresses to severe disease in as little as 3 or 4 years.1

In a sense, there are 2 timelines to keep in mind when considering progression of HCV-related liver disease. One timeline begins when a patient becomes infected with HCV, marking the onset of liver injury and a course of progression (in the absence of successful treatment) that varies from several years to as long as 50 years. The second timeline begins at the onset of cirrhosis. Progression from compensated asymptomatic cirrhosis to decompensated liver disease occurs in approximately 5% of HCV-infected patients per year. In addition, HCC develops in 1% to 2% of patients with HCV-related cirrhosis per year and eventually results in symptomatic decompensated disease.2

Cirrhosis and Hepatic Decompensation

Approximately 5% of HCV-infected patients with cirrhosis will have progression to hepatic decompensation per year. Hepatic decompensation is characterized by: (1) ascites, which itself may be complicated by hepatorenal syndrome (HRS), hepatic hydrothorax, and spontaneous bacterial peritonitis (SBP); (2) encephalopathy; (3) bleeding varices; and (4) coagulopathy (indicated by a prothrombin time [PT] 5 seconds above the control time or by an international normalized ratio [INR] greater than 1.5). Clinical staging of cirrhosis was traditionally performed using Child-Turcotte-Pugh scoring, a scoring system initially developed to predict a patient’s survival associated with portal shunt surgery. It was later adapted to determine priority for liver transplantation. Scores are based on presence and degree of abnormalities in bilirubin level, albumin level, INR, and on presence and severity of hepatic encephalopathy and ascites. Cirrhosis staging under this system is divided into class A, B, or C, with each class having an assigned 1- and 2-year survival rate.

The Child-Turcotte-Pugh scoring system is not highly reliable for predicting mortality, however, and in recent years has been replaced by the more complex model for end-stage liver disease (MELD) scoring system. MELD scoring uses bilirubin, creatinine levels, and the INR to predict mortality risk and determine timing of orthotopic liver transplantation. For example, for a patient with end-stage liver disease, a creatinine level of 1.6 mg/dL, bilirubin level of 1.4 mg/dL, and an INR of 1.6, the MELD system will predict a 3-month mortality risk of 18%.

Most of the damage in decompensated liver disease is related to alteration in blood flow through the liver. The portal vein, which supplies the blood to the liver, is formed by the confluence of the superior and inferior mesenteric veins and the splenic vein (Figure 2). A buildup of fibrotic scar tissue in the liver can cause obstruction of blood flow into the liver, causing blood to back up in the many vessels in the splanchnic circulation and resulting in numerous adverse consequences. The spleen becomes enlarged and begins to filter nonnecescent blood cells from the circulation, resulting in decreased levels of platelets, red blood cells, and white blood cells. Decreased absorption of fluids along the peritoneal surface also occurs because lymphatic drainage is supplemented by blood flow from the peritoneal space into the splanchnic circulation, resulting in ascites.

A response to reduced blood flow into the liver is the development of collateral vessels. These vessels grow...
have SBP at the time of admission, whether or not fever or abdominal pain is present, and SBP is associated with marked morbidity and mortality.

Tapping does not require that the patient be sent to interventional radiology for a computed tomography (CT)-guided tap. The procedure is safely performed in the midline subumbilical area with the patient sitting at a 30-degree angle. For a diagnostic tap, the procedure can be accomplished in any patient with a 1.5-inch needle (and with a 1.0-inch needle in most). Tapping is very safe regardless of the patient’s degree of coagulopathy, as the area beginning approximately 2 cm below the umbilicus is relatively avascular. There is no need to have fresh frozen plasma or platelets on hand for the procedure. Cell counts on the fluid should be performed and fluid should be injected directly into bedside culture bottles, because false-negative results occur in 40% to 50% of cases in which the fluid is processed in the laboratory rather than inoculated at bedside. For therapeutic taps, a large-gauge multi-perforated Caldwell or similar needle is used. Albumin replacement is required if the patient’s creatinine level is elevated or if more than 5 L of fluid is removed.

Management of ascites is diagrammed in Figure 3. At the initial visit for patients with tense ascites, a large-volume tap is performed to relieve discomfort as quickly as possible. Patients are placed on a sodium-restricted diet (maximum of 2 g/day) and diuretic therapy is initiated. The most effective approach in diuretic treatment of ascites is not to start with higher doses of the rapid-acting agent furosemide, but rather to start with slower-acting treatment such as the aldosterone antagonist spironolactone (50 mg/day) in combination with lower doses of furosemide (20 mg/day or 40 mg/day) or bumetanide (1 mg/day); doses are then titrated upward at 2-week intervals to maximum doses of 400 mg/day for spironolactone with 160 mg/day for furosemide, or 4 mg/day for bumetanide.

When ascites is managed appropriately, the risk of progressing to refractory ascites is relatively low. When refractory ascites does occur, it is treated with repeated large-volume paracentesis. Consideration should be given to placement of a transjugular intrahepatic portosystemic shunt (TIPSS), which is successful in reducing ascites in 60% to 70% of cases and eliminating it in 20% to 30% of cases. Placement of TIPSS should only be performed by highly experienced interventional radiologists after evaluation of the patient by a hepatologist. Finally, the patient’s candidacy for liver transplantation should be considered.

Spontaneous Bacterial Peritonitis

SBP is diagnosed by examining the ascitic fluid: greater than 500 white blood

Figure 2. Splanchnic circulation. Arrows indicate direction of blood flow.

Mostly in mucosal junction areas and can result in the development of varices in the esophagus, stomach, and rectum. Recanalization of vessels at the umbilical vein occurs in some patients, driving the development of new vessels across the anterior abdomen (called caput medusae).

Management of Ascites and its Complications

Ascites can cause substantial pain and discomfort. Patients may ask for narcotics for pain relief, but narcotic use should be avoided if possible by patients who already have hepatic impairment. As noted, complications of ascites include HRS, hepatic hydrothorax, and SBP. Large ascites should also be relieved at first observation by tapping (also known as large volume paracentesis [LVP]). Every time the patient is admitted to the hospital and with every change in health status (eg, worsening ascites, development of bleeding varices, or worsening hepatic encephalopathy), a diagnostic tap should be performed. Tapping at the time of hospital admission is important because a high proportion of patients with ascites
cells/mL, greater than 250 polymorphonuclear cells/mL, or a positive culture result are indicative of SBP. Each definition listed is trumped by the next one on the list. Treatment is with a 5-day course of intravenous cefotaxime or other cephalosporin. For beta-lactam allergy, ciprofloxacin may be used. Repeat paracentesis should be considered at 48 hours to 72 hours after treatment initiation to check for white blood cell response; absence of response may suggest the presence of an organism with drug resistance or a complex polymicrobial process that is not SBP. Albumin infusions should be given to patients with SBP, as they have been shown to reduce mortality.

One study showed a reduction in 60-day mortality from 29% with cefotaxime alone to 10% with cefotaxime plus 1.5 g/kg albumin administered within 6 hours of SBP diagnosis, followed by 1.0 g/kg on day 3. Antibiotic prophylaxis with ciprofloxacin (750 mg/week) has been shown to prevent SBP in patients with ascites, with one classic study showing a 6-month incidence of SBP of 4% with ciprofloxacin versus 22% with placebo. Alternative antibiotics for prophylaxis are norfloxacin and trimethoprim-sulfamethoxazole.

Hepatic Hydrothorax

The ascites complication of hepatic hydrothorax results from a break in the diaphragm that creates a ball-valve effect such that each breath causes inflow of fluid from the abdomen into the pleural space. The right pleural space is much more frequently involved than the left. Hepatic hydrothorax is not to be confused with primary pleural effusion, and it is not to be treated with insertion of a chest tube. Placement of a chest tube in a patient with hepatic hydrothorax results in a continuous loss of protein that rapidly renders the patient nutritionally depleted, making liver transplantation impossible. Patients with hepatic hydrothorax may or may not have visible ascites.

Hepatic hydrothorax should be suspected for any patient with advanced liver disease and right-sided effusion. Hepatic hydrothorax should be managed by aggressive diuresis, pleural taps when needed, and immediate consideration for liver transplantation. Patients requiring frequent pleural taps may gain additional MELD points on the transplant list.

Varices

Patients with cirrhosis must be monitored for the development of varices (Figure 4) and variceal bleeding using EGD. Those with no varices should have repeat EGD performed at 3 years for well-compensated liver disease and at 1 year for decompensated disease. Patients with small varices (Grade 1) may begin nonselective beta-blocker prophylaxis. Patients with medium (Grade 2, 5-10 mm) or large (Grade 3, >10 mm) varices who have no red wales (evidence of impending bleeding) should receive beta-blocker treatment; those with red wales should be given beta-blocker treatment and considered for esophageal band ligation. Esophageal varices develop in 55% to 80% of patients with cirrhosis, and bleeding occurs in 25% to 40% of those with varices. Of those with bleeding, 30% to 50% die within 90 days. Of the 50% to 70% who survive an initial bleeding episode, 70% will experience subsequent bleeding.

Hepatic Encephalopathy

Hepatic encephalopathy is classically detected by the observation of hand asterixis (also known as liver flapping or flapping tremor). It is caused by the shunting of gut-derived neuroactive substances that cross the blood-brain barrier; these substances are mostly nitrogen based and act as inhibitory neurotransmitters. Survival probabilities for patients with hepatic encephalopathy are 42% at 1 year and 23% at 3 years. Precipitating factors for hepatic encephalopathy include a high-protein diet, gastrointestinal bleeding, infection (including SBP), vascular thrombosis, HCC, and poor adherence to hepatic encephalopathy treatment. Traditional treatments for hepatic encephalopathy include the use of lactulose or other nonabsorbable sugars, which cause osmotic diarrhea and movement of nitrogen compounds out of the gut, and the use of antibiotics such as neomycin and metronidazole that change the gut flora.

A recent phase III trial showed that, compared with placebo, the nonabsorbable antibiotic rifaximin administered at 550 mg twice daily was associated with a statistically significant reduction in episodes of breakthrough hepatic encephalopathy in patients in remission from recurrent hepatic encephalopathy (breakthrough episodes occurred in 22.1% of patients taking rifaximin vs 45.9% with placebo; P < .001). More than 90% of patients in the trial received concomitant lactulose therapy. Rifaximin treatment was also associated with a statistically significant reduction in frequency of hospitalization for hepatic encephalopathy (13.6% hospitalization rate with rifaximin vs 22.6% with placebo, P = .01). The incidence of overall and serious adverse events was similar in the rifaximin and placebo recipients.

Liver Transplantation

Criteria for referring patients for liver transplantation include any signs of hepatic decompensation (eg, ascites, hepatic encephalopathy, or variceal bleeding), a MELD score greater than 10, or HCC at any level of MELD. Unfortunately, the need for liver transplantation outstrips the availability of liver donors. In the United States, only about 5500 livers become available each year. Referring patients for transplantation expeditiously can be lifesaving. Encouraging people to become donors is lifesaving at the community level.

Presented by Dr Sherman in April 2011. First draft prepared from transcripts by Matthew Stenger. Reviewed and edited by Dr Sherman in August 2011.
Financial Disclosure: Dr Sherman has served as a consultant or scientific advisor to Boehringer Ingelheim Pharmaceuticals, Inc, Genentech, Inc, GlaxoSmithKline, Merck & Co, Inc, Regulus Therapeutics Inc, SciClone Pharmaceuticals, Three Rivers Pharmaceuticals, and Vertex Pharmaceuticals, Inc. He has served on data and safety monitoring boards and endpoint adjudication committees for MedPace, Inc, Pfizer Inc, and Tibotec Therapeutics.

References

Review

When Patients Cannot Take Pills: Antiretroviral Drug Formulations for Managing Adult HIV Infection

Chessa R. Nyberg, PharmD, Brooke Y. Patterson, PharmD, and Meghan M. Williams, PharmD

Providing antiretroviral therapy for the HIV-infected population is a complex and challenging task. Treatment is often complicated by the shifting demographic of HIV-infected patients that now includes a large aging population in which patients often have multiple comorbidities. HIV clinicians are challenged with choosing the optimal combination of antiretrovirals based on potency, tolerability, bioavailability, and ease of administration. The issue of bioavailability is of paramount importance for those patients who can’t swallow tablets, are unable to take anything by mouth before a procedure, or who need medication through a nasogastric tube or percutaneous endoscopic gastrostomy tube. A thorough search of several drug databases, a literature search of MEDLINE through Ovid, and a review of full prescribing information for each currently available antiretroviral drug, was performed to obtain insight into the bioavailability of antiretrovirals. Implications for the findings are discussed as they relate to adherence, resistance, alternative methods of administration, and the sometimes conflicting information on bioavailability that exists for various antiretroviral agents.

Introduction

Thirty years have passed since the global recognition of HIV as the cause of AIDS. Since that time, scientists have developed a number of medications with activity against the virus—the antiretroviral drugs—that exert their effects by inhibiting viral replication, thereby allowing for immune system recovery. Since 1996, scientists and practitioners have recognized the benefits of multidrug therapy in the treatment of HIV infection. Strategies for implementing triple-drug therapy were created in response to the treatment challenge presented by the rapidly evolving nature of HIV; the virus acquires mutations that cause decreased efficacy of antiretroviral drugs (i.e., resistance), thereby leading to viral rebound and immune system destruction.

Because of the increased understanding of the appropriate use and combinations of antiretroviral drugs, HIV infection has evolved from a disease associated with high mortality to a chronic disease for patients who have full access to well-managed care and who adhere to treatment. The demographic of HIV-infected patients also has shifted throughout the years; what was once a viral infection primarily associated with young men has become an epidemic that includes a large aging population. HIV care practitioners must now consider that the patient groups infected with the virus are living longer and receiving their diagnosis at later stages of the disease than patients affected in earlier years of the epidemic. For example, in the United States, the population of HIV-infected patients over age 50 years increased by almost 20% from 2001 to 2005.1

This enhanced longevity of HIV-infected patients is largely the result of the development of potent antiretroviral regimens, before which co-infections and complications of HIV disease often resulted in negative or fatal outcomes for patients. In the current treatment era, mortality has substantially decreased, and HIV-seropositive patients have an improved quality of life.2

With advanced age from declining mortality, however, comes a new subset of health care issues for patients. Current treatment involves not only the use of complex antiretroviral regimens for life but may also require periodic hospital stays or outpatient visits to manage comorbidities or complications of treatment, particularly diabetes and cardiovascular or cerebrovascular effects. HIV infection as an inflammatory disease is recognized to contribute to increased risks of myocardial infarction or stroke, as has been demonstrated in the SMART (Strategies for Management of Antiretroviral Therapy) trial3 and the D:A:D (Data Collection on Adverse Events of Anti-HIV Drugs) study.4

With this increased understanding, so too has understanding of the importance of sustained viral suppression in reducing these long-term risks associated with HIV infection and its treatment. In 2008, treatment guidelines from the IAS–USA5 began to reflect the field’s paradigm shift toward treating HIV infection earlier in the course of the disease to prevent long-term sequelae, a trend that continued in the 2009 US Department of Health and Human Services (DHHS) guidelines,6 the 2010 IAS–USA guidelines,7 and the 2011 DHHS update.8 Although the benefits of early treatment are many, so is the importance of increased understanding of the bioavailability and alternative dosage forms of these
Current Challenges in Bioavailability of Antiretrovirals

Currently, more than 20 antiretroviral drugs have been approved by the US Food and Drug Administration (FDA) for treatment of HIV infection. The majority of these drugs are available solely in tablet form for ease of administration; however, this limited formulation availability creates problems for patients unable to take medications orally. Examples of such situations include patients undergoing inpatient or outpatient procedures that do not allow them to take drugs by mouth, patients with swallowing disorders, and those with gastrointestinal diseases for which they receive nutrition through an alternative route.

A study of HIV-infected patients between 2000 and 2002 revealed that 20% utilized hospital inpatient services. The impact of hospital stays on antiretroviral drug adherence and long-term viral suppression can be damaging if treatment is not managed properly during the inpatient period. In a study by Heelon and colleagues, most prescribing errors involving antiretroviral drugs included those in the following categories: incomplete regimens, incorrect dosages, incorrect schedules, medication-disease interactions, incorrect formulations, incorrect antiretroviral drugs, duplication of therapy, and prescription of drugs with drug-drug interactions. With appropriate monitoring of patients by HIV specialists, these prescribing errors can be reduced.

Because complications and subsequent mortality can be lessened with viral suppression and immune restoration, it is vital for HIV-infected patients to continue receiving their antiretroviral regimens without interruption whenever possible. For patients unable to take oral medications, many issues need to be addressed when analyzing the bioavailability of the various antiretroviral drugs. For several medications, conflicting information exists. Alternative administration of many antiretroviral drugs may profoundly change the drugs’ bioavailabilities, pharmacokinetics, and subsequent efficacies. To ensure that health care practitioners are best able to make antiretroviral treatment decisions when facing alternative drug administration issues, a literature search was conducted and information guide created.

Search Methods and Results

Full prescribing information from respective manufacturers of each currently available oral antiretroviral drug formulation was reviewed for any data indicating that the medication could be crushed, opened, or added to water or food. In addition, a search was performed on each drug using information in databases from Lexi-Comp, Clinical Pharmacology, and Facts & Comparisons. For any drug without a specific formulation recommendation, a MEDLINE search through Ovid was completed using the drug trade name, the generic name, and the search terms “crush,” “sprinkle,” “extemporaneous preparation,” and “bioavailability.” The manufacturers were contacted for information on alternative administration of each product. For any drug that still lacked information, it was assumed that the medication could not be crushed or opened because of a lack of evidence. The search results are compiled in Table 1.

Discussion

The medical management of persons living with HIV infection or AIDS can be challenging for health care practitioners who are not experienced with antiretroviral drugs. Given the growing complexity and longevity of this patient population, HIV care has become highly specialized. HIV-infected patients are about 25% more likely to experience a medication error while in the hospital than are patients admitted without HIV infection. These drug errors are most likely the result of incorrect dosing, incorrect regimens, incorrect formulations, or incorrect scheduling.
Table 1. Current Antiretroviral Drug Formulations for the Management of Adult HIV Infection

<table>
<thead>
<tr>
<th>Drug</th>
<th>Can Be Crushed or Sprinkled</th>
<th>Solution or Suspension Available</th>
<th>Food Considerations</th>
<th>Special Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonnucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delavirdine</td>
<td>100-mg tablets: Yes, 200-mg tablets: No (Do not readily disperse in water)</td>
<td>No</td>
<td>May be taken without regard to meals</td>
<td>100-mg tablets may be dispersed in water. To prepare dispersion, add 4 100-mg tablets to ≥ 3 ounces of water, let stand for a few minutes, then stir until a uniform dispersion occurs. Administer immediately, rinse glass, and have patient swallow each rinse completely to ensure entire dose is consumed.</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>Yes</td>
<td>No</td>
<td>Take on an empty stomach</td>
<td>Has a peppery taste; grape jelly has been used to disguise this.</td>
</tr>
<tr>
<td>Etravirine</td>
<td>Yes</td>
<td>No</td>
<td>Take after meals</td>
<td>Tablets may be dispersed in water; stir well and have patient drink mixture immediately. Rinse glass with water several times, and have patient swallow each rinse completely to ensure entire dose is consumed.</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>No information</td>
<td>50 mg/5 mL suspension</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>No (25-mg tablets do not readily disperse in water)</td>
<td>No</td>
<td>Should be taken with food</td>
<td>Needs to be taken with a meal (> 533 calories). Protein drinks should not replace a meal when taking this medication.</td>
</tr>
<tr>
<td>Nucleoside Analogue Reverse Transcriptase Inhibitors (nRTIs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abacavir</td>
<td>No information</td>
<td>20 mg/mL solution (strawberry-banana flavored)</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>Didanosine</td>
<td>No</td>
<td>Pediatric powder for solution, in 2g/bottle and 4g/bottle</td>
<td>Take on an empty stomach (30 minutes before or 2 hours after food)</td>
<td></td>
</tr>
<tr>
<td>Emtricitabine</td>
<td>No information</td>
<td>10 mg/mL solution (cotton candy flavored)</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>Lamivudine</td>
<td>No information</td>
<td>10 mg/mL solution (strawberry-banana flavored)</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>Stavudine</td>
<td>Yes</td>
<td>1 mg/mL powder for solution (fruit flavored)</td>
<td>May be taken without regard to meals</td>
<td>Capsules can be opened carefully and mixed into 30 mL of yogurt or applesauce.</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>No information</td>
<td>No</td>
<td>May be taken without regard to meals</td>
<td>No pharmacokinetics studies performed on crushed versus whole tablet. Tablet lacks enteric coating or sustained-release mechanism and will disintegrate in water, grape juice, or orange juice. Drug is moisture sensitive and must be consumed immediately after mixing. Rinse container and consume rinse.</td>
</tr>
<tr>
<td>Zidovudine</td>
<td>No (Even unopened, the capsule can cause esophageal irritation and ulceration)</td>
<td>50 mg/5 mL syrup (strawberry flavored) and 10 mg/mL injection solution</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
</tbody>
</table>

aDelavirdine is rarely prescribed and is not recommended for initial therapy for HIV infection

(continued on next page)
<table>
<thead>
<tr>
<th>Drug</th>
<th>Can Be Crushed or Sprinkled</th>
<th>Solution or Suspension Available</th>
<th>Food Considerations</th>
<th>Special Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protease Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir<sup>12,30</sup></td>
<td>No</td>
<td>No</td>
<td>Absorption increases with food</td>
<td></td>
</tr>
<tr>
<td>Darunavir<sup>13,31</sup></td>
<td>No</td>
<td>No</td>
<td>Absorption increases with food</td>
<td></td>
</tr>
<tr>
<td>Fosamprenavir<sup>22</sup></td>
<td>No information</td>
<td>50 mg/mL solution (grape, bubblegum, or peppermint flavored)</td>
<td>Adult solution must be taken without food</td>
<td>Pediatric solution must be taken with food</td>
</tr>
<tr>
<td>Indinavir<sup>13</sup></td>
<td>No information</td>
<td>No</td>
<td>Should be taken on an empty stomach, but with 48 ounces of water daily</td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ritonavir<sup>1-13,34</sup></td>
<td>No</td>
<td>80 mg/mL or 20 mg/mL solutions</td>
<td>Solution should be taken with food</td>
<td></td>
</tr>
<tr>
<td>Nelfinavir<sup>35</sup></td>
<td>Yes</td>
<td>50 mg/g oral powder for suspension</td>
<td>Should be taken with food</td>
<td></td>
</tr>
<tr>
<td>Ritonavir<sup>12,36,37</sup></td>
<td>No</td>
<td>80 mg/mL solution (peppermint or caramel flavored)</td>
<td>Should be taken with food</td>
<td></td>
</tr>
<tr>
<td>Saquinavir<sup>38</sup></td>
<td>Yes</td>
<td>No</td>
<td>Take within 2 hours of a meal</td>
<td>Opening capsules is permissible for patients unable to swallow them. No clinical studies evaluate the safety or efficacy when administered as extemporaneous preparation. Capsules were the most palatable when contents were mixed with simple syrup or strawberry-flavored jelly or jam. Bioavailability as an extemporaneous preparation in simple syrup was similar to that of unopened capsules. When administered as extemporaneous preparation in jelly, jam, or baby formula, there was a 44%-60% increase in area under the curve and a 42%-48% increase in maximum plasma concentration over the unopened capsules.</td>
</tr>
<tr>
<td>Tipranavir<sup>13,39</sup></td>
<td>No</td>
<td>100 mg/mL solution (butternut or butter-toffee flavored)</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
idence to support crushing or sprinkling of many of the available antiretroviral drugs. Further research needs to be conducted to determine more specific bioavailability data. These studies also need to identify cohorts of older persons to provide information on antiretroviral drug bioavailability in the aging population.

Financial Disclosures: Dr Nyberg has no relevant financial affiliations to report.

Dr Patterson has served as a paid lecturer for Abbott Laboratories, Viiv Healthcare, and Tibotec Therapeutics. Dr Williams has no relevant financial affiliations to report.

References

Table 1. Current Antiretroviral Drug Formulations for the Management of Adult HIV Infection (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Can Be Crushed or Sprinkled</th>
<th>Solution or Suspension Available</th>
<th>Food Considerations</th>
<th>Special Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrate Strand-Transfer Inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raltegravir¹²,⁴⁰</td>
<td>No</td>
<td>No</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>NNRTI-nRTI Combinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efavirenz/ emtricitabine/ tenofovir¹¹</td>
<td>No</td>
<td>(Efavirenz is water insoluble; manufacturer recommends not crushing for this reason)</td>
<td>Should be taken on an empty stomach</td>
<td></td>
</tr>
<tr>
<td>Rilpivirine/ emtricitabine/ tenofovir²²</td>
<td>No information</td>
<td>No</td>
<td>Should be taken with food</td>
<td>Need to be taken with a meal (>533 calories). Protein drinks should not replace a meal when taking this medication.</td>
</tr>
<tr>
<td>nRTI Combinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abacavir/ lamivudine²³</td>
<td>No information</td>
<td>No</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>Abacavir/ lamivudine/ zidovudine²⁴</td>
<td>No information</td>
<td>No</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>Emtricitabine/ tenofovir²⁵</td>
<td>No information</td>
<td>No</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>Lamivudine/ zidovudine²⁶</td>
<td>No information</td>
<td>No</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
<tr>
<td>Fusion Inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maraviroc²⁷</td>
<td>No information</td>
<td>No</td>
<td>May be taken without regard to meals</td>
<td></td>
</tr>
</tbody>
</table>

Enfuvirtide was not included in this table because it is administered subcutaneously and thus has virtually no bioavailability issues.⁴⁹
Topics in Antiviral Medicine

Topics in Antiviral Medicine is published 4 to 6 times a year. Please complete this form to obtain a complimentary subscription or notify the IAS–USA of a change in address. Subscribers will also receive information about upcoming IAS–USA continuing medical education courses.

Please check the appropriate box:
☑ I am a new subscriber to the IAS–USA mail list
☑ I am a current subscriber requesting a change of address

IAS–USA ID Number ________
(if applicable) Please see upper left corner of mailing address as shown in sample.

Please check the Top Antivir Med subscription type:
☑ Paper form only
☑ Electronic form only
☑ Paper and electronic forms

Please print or type

First Name ___________________________ MI ___________________________ Last Name ___________________________

Degree or License (MD, RN, PA, none, etc) ___________________________ Title ___________________________

Institution or Organization __

Specialty / Primary Field of Interest ____________________________________

Address (please check one) (Home Address Work Address)

City ___________________________ State / Province ___________________________

Postal Code ___________________________ Country ___________________________

Mobile Phone ___________________________ Facsimile ___________________________

Home Phone ___________________________ Work Phone ___________________________

E-mail Address (Home E-mail Work E-mail)

Do you work for a commercial company in any capacity? Yes _____ No _____
(eg, pharmaceutical, diagnostic, medical product, advertising, insurance, investment, communications)

If yes, please indicate company: __

Fax or mail this form to: IAS–USA
425 California Street, Suite 1450
San Francisco, CA 94104-2120
Fax: (415) 544-9401

FOR INTERNAL USE ONLY
DATE ______________ INITIALS ______________ CHANGES__________________________
Categories of Articles

Perspectives. Perspective articles are summaries of selected talks given at IAS–USA continuing medical education courses. An IAS–USA medical writer prepares a summary manuscript from a transcript of the talk. The manuscript is reviewed and edited by the specific course presenter and the journal’s appointed peer reviewers.

Reviews. Topics in Antiviral Medicine welcomes original review articles on current issues related to infection with HIV or other viruses. Topics in Antiviral Medicine does not publish original research. Manuscripts should be 3000 to 6000 words (excluding references, tables, and figures) and should include numbered references and a brief introductory abstract of approximately 100 to 200 words. Original, adapted, or reprinted figures and tables may be included and should be cited in the text and accompanied by a brief title. Adapted and reprinted work requires proof of permission obtained from the original publishers and authors. Authors interested in submitting unsolicited manuscripts are encouraged to submit an outline or abstract of the proposed manuscript first; please contact the editor for further information.

Editorials. Topics in Antiviral Medicine and its editors invite submission of editorials. Editorials should be approximately 500 to 1500 words (excluding references) and should include numbered references.

Special Contributions. A special contribution article often represents the unique contribution (such as a consensus statement) of an author or group of authors.

Cases From the Field. Topics in Antiviral Medicine invites submission of case reports accompanied by a scholarly literature review of the topic. Each case report should be 1500 to 3000 words (excluding references, tables, and figures), include numbered references and a brief summary sentence, and seek to teach an important lesson for HIV or hepatitis virus care practitioners.

Stories. Stories for the Telling Stories column share the experiences of those involved in the care of people infected with HIV or other viruses. Stories may be approximately 800 to 3500 words; unsolicited submissions are welcome.

Commentaries. Discussion on a current issue in the management of viral diseases is welcome as a Commentary. Commentaries should be 500 to 1500 words and include numbered references as appropriate. Commentaries may be invited by the editors; unsolicited submissions are also welcome for consideration.

Letters to the Editor. Letters to the editor are welcome and should be sent to the address listed below: Limit 500 words.

Special Issues. Topics in Antiviral Medicine publishes 1 or 2 issues each year with a special focus, such as reports from recent scientific meetings and summaries of special IAS–USA continuing medical education courses.

Online Articles: Occasional articles appear online only. They are easily distinguished from printed articles by pagination beginning with “e.”

Reprints. Reprints of articles by expert panels convened by the IAS–USA are included periodically in Topics in Antiviral Medicine.

Submission of Manuscripts

Manuscripts should be submitted via mail or e-mail to the address below. Each manuscript author should complete an Authorship Form, which is available online at http://www.iasusa.org/pub or may be obtained by contacting the editor at the address below. Outlines or abstracts of proposed manuscripts are welcome and may be sent via mail or e-mail.

Editor, Topics in Antiviral Medicine
IAS–USA
425 California Street, Suite 1450
San Francisco, CA 94104-2120
E-mail: topics2011 “at” iasusa.org

Copyright

Copyright to manuscripts published in Topics in Antiviral Medicine is owned by the IAS–USA. All authors and contributors of manuscripts accepted for publication, with the exception of US federal government employees, must sign a copyright transfer form as a condition of publication.

Financial Disclosure

It is the policy of the IAS–USA to ensure balance, independence, objectivity, and scientific rigor in all of its educational programs. To that end, all authors and contributors of articles published in Topics in Antiviral Medicine are required to disclose to readers any significant financial interest or other relationship with any organization having financial interest in the content of the manuscript. Financial interests include employment, consultancy, honorarium, grant/research support, major stock ownership, and membership in a speakers bureau. The complete financial disclosure statements for all authors and contributors are published with the articles.

Visit our Web site at www.iasusa.org for...

• 2012 course schedules
• Educational resources from the 14th Annual Ryan White Clinical Conference
• New Cases on the Web educational activities