New Frontiers in Solid Organ Transplantation and HIV Infection

Christine Durand, MD
Assistant Professor of Medicine and Oncology
Johns Hopkins University School of Medicine
Baltimore, MD

Learning Objectives

After attending this presentation, learners will be able to:

▪ Recognize which HIV+ patients are appropriate candidates for referral for transplant
▪ Modify antiretroviral therapy in order to minimize interactions with transplant immunosuppression
▪ Discuss the pros and cons of treating hepatitis C infection in transplant candidates

Outline

▪ Growing need for transplant
▪ Outcomes: kidney and liver transplant
▪ Management challenges: HCV, rejection, drug interactions, transplant infections
▪ HIV to HIV transplantation: HOPE in Action
Kidney disease in HIV infection

- 10-30% prevalence of chronic kidney disease
- HIV-associated nephropathy, hepatitis B/C associated nephropathy
- Antiretroviral toxicity
- Hypertension, diabetes, cardiovascular
- About 1.5% of individuals on dialysis
- More than 10,000 HIV+ individuals on dialysis

Liver disease in HIV infection

- Hepatitis B, C
- Alcoholic and non-alcoholic fatty liver disease
- 13% of all deaths due to liver disease

High mortality for those with HIV and ESRD

US 1999-2012
N = 10,526
10 year survival
HIV+ vs HIV-
63% vs. 23%
HIV+ dx of HIV-associated nephropathy

Lucas G/Kalayjian R. CID 2014; SRTR data
Smith/Lundgren. DAD study group. Lancet 2014.
High mortality for those with HIV and ESLD

Mortality on liver wait-list
At one yr HIV+ 36% vs HIV-15%
Ragni M/Fung J. Liver Transplantation. 2005

• Less access to transplant
At one yr HIV+ 36% transplanted vs HIV-47%

Outline

• Growing need for transplant
• Outcomes: kidney and liver transplant
• Management challenges: HCV, rejection, drug interactions, transplant infections
• HIV to HIV transplantation: HOPE in Action

NIH TR Study: HIV+ kidney transplant

N = 150
CD4 > 200, VL < 50
Median age: 46
Black: 70%
Male: 80%
HIV-AN: 25%
Hypertension: 25%
Diabetes: 9%

Patient survival
1 yr: 95%
3 yr: 91%
4 yr: 89%

Graft survival
1 yr: 90%
3 yr: 77%
4 yr: 70%

NIH TR Study: HIV+ kidney transplant

Patient survival
1 yr: 95%
3 yr: 91%
4 yr: 89%

Graft survival
1 yr: 90%
3 yr: 77%
4 yr: 70%

SRTR: HIV+ kidney transplant, long term outcomes

Kidney
N = 514
Matched HIV- 1:10
Race, age, sex, BMI, PRA, induction, steroids, donor age, cold ischemia time
Patient and graft survival through 10 years

Locke JI, Segov DL. JASN, 2015.
SRTR: HIV+ kidney transplant, long term outcomes

Kidney
N = 514
Matched HIV-
Patient survival
HIV+ HIV-
5 yr: 89% 89%
10 yr: 64% 78%
p=.10

NIH: HIV+/HCV+ liver transplant

HIV/HCV HCV
N = 89 N = 325
CD4 > 100
VL – any allowed*

NIH: HIV+/HCV+ liver transplant

HIV/HCV HCV
N = 89 N = 325
CD4 > 100
VL – any allowed*
Median age: 49
White: 65%
Male: 75%
Liver cancer: 35%
 Decompensated liver disease: 65%

NIH: HIV+/HCV+ liver transplant

<table>
<thead>
<tr>
<th>HIV/HCV</th>
<th>HCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 89</td>
<td>N = 235</td>
</tr>
</tbody>
</table>

Patient survival
- 1 yr: 76% 92%
- 3 yr: 60% 79%

Graft survival
- 1 yr: 72% 88%
- 3 yr: 53% 74%

Outline

- Growing need for transplant
- Outcomes: kidney and liver transplant
- Management challenges: HCV, rejection, drug interactions, transplant infections
- HIV to HIV transplantation: HOPE in Action

HCV Treatment in Transplant

DAAs are effective, well-tolerated with minimal drug interactions
- Patients on dialysis: cure rates 95-100%
- Transplant recipients: cure rates 95-100%
- Treatment experienced, cirrhotic patients: lower
Benefits

• Prevent progression of liver disease
• Prevent HCV complications e.g. fibrosing cholestatic hepatitis or immune complex glomerulonephritis

Risks

• Exclude HCV+ donors: impact on wait time
• Harder to cure in patients with cirrhosis
• If relapse, risk of RAS HCV variants

HCV Treatment in Transplant – Pre or Post?

Benefits

• Prevent progression of liver disease
• Prevent HCV complications e.g. fibrosing cholestatic hepatitis or immune complex glomerulonephritis

Risks

• Exclude HCV+ donors: impact on wait time
• Harder to cure in patients with cirrhosis
• If relapse, risk of RAS HCV variants

What’s the answer in practice?

• No guidelines
• Strongly consider waiting for kidney transplant candidates
• For low MELD liver candidates, consider treating
• For high MELD liver candidates, consider waiting
INDUCTION

Anti-thymocyte globulin

IL2 receptor blocker:
- Basiliximab
- Daclizumab

OR

Immunosuppression after transplant

Steroids

Liver

Calcineurin inhibitors:
- Cyclosporine, tacrolimus

MAINTENANCE

Mycophenolate mofetil

OR

mTor inhibitors:
- Sirolimus, everolimus

Steroids

NIH: Rejection in HIV+ kidney transplant

N = 150 HIV+ KT

1 yr: 31%
3 yr: 38%
3-4 fold higher risk

NIH and SRTR: rejection in HIV+ liver transplant

NIH study:
• 39% at 3 yrs (> 50% acute cases in first few weeks)

SRTR data:
• 18% at 1 yr

Locke JE/Segev DL. Transplantation, 2016.

ART and immunosuppression interactions

MAINTENANCE
Calcineurin inhibitors: cyclosporine, tacrolimus

Drug interactions?
• Pharmacoenhancers (ritonavir, cobicistat)
 • To maintain safe troughs, very low and infrequent dosing (e.g. 0.5 mg tacrolimus/week), underexposure?

AVOID CYP3A4 INHIBITORS

SRTR: Rejection in HIV+ kidney transplant

N = 516 HIV+ KT

Rejection 1 yr:
15% HIV+ vs 8% HIV-
2 fold higher risk of rejection

Lower in those who received ATG

Post-transplant infections: NIH TR kidney transplant

Pre-transplant	Post-transplant
Prior history of an OI | N = 13
N = 52 | 4 Kaposi sarcoma
 • 30 PCP | 3 PCP
 • 8 CMV | 1 cryptosporidiosis
 • 7 MAC | 6 candida (esophagitis 5,
 • 3 KS | No recurrences in patients with OI history

No survival difference with OI history

Post-transplant infections: impact of induction therapy

Infections common
 • > 50% in first year
 • Mostly UTI
 • AIDS defining ≈10%
 • Mostly CMV

No difference by induction

Trend towards fewer infections with ATG

Opportunistic infection prophylaxis – HIV TR

• PCP prophylaxis – Bactrim – indefinite
• CMV prophylaxis – valganciclovir – duration depends on donor/recipient CMV status
• MAC, histoplasmosis etc – depends on history, CD4
• Transplant ID consultation pre-transplant
Outline

• Growing need for transplant
• Outcomes: kidney and liver transplant
• Management challenges: HCV, rejection, drug interactions, transplant infections
• HIV to HIV transplantation: HOPE in Action

United States: HIV+ transplant over time

HIV+ Kidney Transplant

HIV+ Liver Transplant

United States: organ shortage crisis

• 116,622 individuals on the waitlist

In 2016:
• 9,975 deceased donors
• Novel donor sources are needed
• Decrease wait times for HIV+ and HIV-
South Africa: HIV D+/R+ kidney transplant

Muller et al, NEJM 2010: 362: 2336-7

HIV Organ Policy Equity Act: 2013 signed into law

• Directs the Secretary to revise current regulations (specifically, 42 CFR 121.6)
• June 2015
• Directs Secretary to publish research criteria relating to HIV+ to HIV+ transplant
• November 2015
• Requires the OPTN to revise standards for the acquisition and transportation of donated HIV+ organs
• November 2015

Implementation of the HOPE Act: late 2015
Overarching goal of HOPE in Action Studies

Learn if the use of HIV+ deceased donors in the is safe and effective

Risks of HIV D+/R+ Transplant

Challenges and Clinical Decision-Making in HIV-to-HIV Transplantation: Insights From the HIV Literature

- HIV superinfection
- HIV nephropathy
- Donor derived infections
- Rejection

Jan 2016: JHU pilot protocol (NCT02602262)
March 2016: first HOPE donor
First in US HIV D+/R+ kidney and liver transplants
20 transplant centers with active HOPE studies

NIH U01 Study: HIV+ deceased donor kidney transplant

19 US Transplant Centers
Safety and efficacy

Non-inferiority design
• Compare outcomes between HIV+ recipients of HIV+ donors and HIV-donors
• N = 160 (80 in each arm)

Program Officer: Jonah Odim, MD PhD
Project Manager: Natasha Watson, MSN

NIH U01 Study: HIV+ deceased donor kidney transplant in the US: R34AI23023, U01AI134591

Trial Design

HIV-to-HIV Solid Organ Transplantation in the US: R34AI23023, U01AI134591

New York, New York, October 20, 2017
HIV+ candidate inclusion criteria

- No active opportunistic infections
- On effective ART with HIV RNA < 200
- Kidney CD4 > 200
- Liver CD4 > 100
- Effective ART regimen anticipated

HIV+ candidate inclusion criteria

- Standard clinical criteria for transplant
- HIV specific criteria
- UNOS organ offers per availability

"Natural randomization"

Trial Design

HIV+ kidney or liver transplant candidates

Standard clinical criteria for transplant
HIV specific criteria

UNOS organ offers per availability
"Natural randomization"

Trial Design
HIV+ donor inclusion criteria

- No active opportunistic infections or cancer
- Any HIV VL or CD4 count is allowed but study team must describe effective post-transplant antiretroviral regimen for the recipient
- Per study investigators’ clinical judgement

HIV- donor inclusion criteria

- Per transplant center study investigator clinical judgement/standard clinical criteria
Primary endpoint
• Time to composite event of major transplant and HIV related complications
• Death, graft failure, rejection, AIDS, virologic failure

Secondary endpoints:
• Graft function
• HIV-associated renal disease
• Surgical complications
• Donor specific antibodies

Other endpoints:
• HIV viral load
• CD4 counts
• HIV superinfection
• Non AIDS infections
• Post-transplant malignancies

Conclusions
• Survival benefit of transplant for HIV+ individuals with end stage organ disease
• Consider waiting to treat HCV until post transplant in some individuals
• Optimize ART (avoid strong CYP3A4 inhibitors)
• HIV+ donors may expand donor options