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This November 2011 edition of the 
IAS–USA drug resistance mutations list 
updates the figures last published in 
December 2010 (Johnson VA et al, Top 
HIV Med, 2010;18:156-163). 

In this update, the format has 
changed to the use of bold type for 
most gene positions and correspond-
ing amino acid substitutions. However, 
the substitutions for which data indi-
cate that there is a lesser impact on 
susceptibility—certain mutations im- 
pacting drugs in the protease inhibi-
tor class and those impacting the non-
nucleoside analogue reverse transcrip-
tase inhibitor (NNRTI) etravirine—are 
represented in plain (non-bold) type. 
For the protease inhibitors, the mu-
tations are designated as “major” or 
“minor” (see user note q); for etra-
virine, see below.

Rilpivirine (formerly TMC278), an 
NNRTI studied in antiretroviral treat-
ment–naive patients and approved 
by the US Food and Drug Administra-
tion (FDA) this year, has been added.  
Fifteen mutations in HIV-1 reverse 
transcriptase have been observed to 
date from rilpivirine-treated patients 
with virologic failure: K101E/P; E138A/
G/K/Q/R; V179L; Y181C/I/V; H221Y;  
F227C; and M230I/L. There are few 
data available on the clinical effective-
ness of rilpivirine therapy for patients 
harboring NNRTI-resistant viruses. As 
a result, all of these mutations were 
bolded. The E138K mutation, espe-
cially with M184I or V, is found most 
frequently in patients in whom rilpiv-
irine is failing, and is thus marked with 
an asterisk (*) because the combina-
tion of E138K and M184I showed a 

6.7-fold reduced phenotypic suscep-
tibility to rilpivirine compared with a 
2.8-fold reduction for E138K alone 
(see user note o).

For etravirine, the Q substitution has 
been added to the E138 position on 
the reverse transcriptase gene, based 
on data from updated analyses of pa-
tients in the DUET trial (Tambuyzer L 
et al, JAIDS, 2011;58:18-22). Using the 
etravirine-weighted genotypic scoring 
system, reverse transcriptase muta-
tions at positions L100I*, K101P*, and 
Y181C*/I*/V* are noted with an aster-
isk (*) to reflect that these mutations 
each have the greatest impact (ie, high-
est weighted scores) on reduced phe-
notypic susceptibility and impaired 
clinical response compared with other 
etravirine mutations (see user note n). 
For this reason, only those positions 
with asterisks are in bold type.

The S substitution has been added to 
the K103N mutation, which is associat-
ed with clinical resistance to efavirenz 
and nevirapine. This addition reflects 
the emerging understanding of substi-
tutions other than N at the 103 position 
in the reverse transcriptase gene. (Har-
rigan PR et al, AIDS, 2005;19:549-554; 
Zhang Z et al, Antimicrob Agents Che-
mother, 2007;51:429-437; Tambuyzer 
L et al, Antivir Ther, 2009;14:103-109).

Methods

Mutations Panel 

The IAS–USA Drug Resistance Mutations 
Group is an independent, volunteer 
panel of experts charged with deliver-
ing accurate, unbiased, and evidence-

based information on these mutations 
to HIV clinical practitioners. As with all 
IAS–USA volunteer panels, members 
are rotated on a structured, planned 
basis. The group reviews new data 
on HIV drug resistance to maintain a 
current list of mutations associated 
with clinical resistance to HIV. This list  
includes mutations that may contrib-
ute to a reduced virologic response to 
a drug.

In addition, the group reviews only 
data that have been published or have 
been presented at a scientific confer-
ence. Drugs that have been approved 
by the US Food and Drug Adminis- 
tration (US FDA) as well as any drugs 
available in expanded access pro-
grams are included (listed in alpha-
betical order by drug class). User  
notes provide additional information  
as necessary. Although the Drug Re-
sistance Mutations Group works to 
maintain a complete and current list  
of these mutations, it cannot be as-
sumed that the list presented here is 
exhaustive.

Identification of Mutations 

The mutations listed are those that have 
been identified by 1 or more of the fol-
lowing criteria: (1) in vitro passage ex-
periments or validation of contribution 
to resistance by using site-directed mu-
tagenesis; (2) susceptibility testing of 
laboratory or clinical isolates; (3) nucleo-
tide sequencing of viruses from patients 
in whom the drug is failing; (4) correla-
tion studies between genotype at base-
line and virologic response in patients  
exposed to the drug.
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The development of more recently 
approved drugs that cannot be tested 
as monotherapy precludes assess-
ment of the impact of resistance on 
antiretroviral activity that is not seri-
ously confounded by activity of other 
drug components in the background 
regimen. Readers are encouraged to 
consult the literature and experts in 
the field for clarification or more infor-
mation about specific mutations and 
their clinical impact. Polymorphisms 
associated with impaired treatment re-
sponses that occur in wild-type viruses 
should not be used in epidemiologic 
analyses to identify transmitted HIV-1 
drug resistance.

Clinical Context

The figures are designed for practitio-
ners to use in identifying key muta-
tions associated with viral resistance 
to antiretroviral drugs and in making 
therapeutic decisions. In the context 
of making clinical decisions regard-
ing antiretroviral therapy, evaluating 
the results of HIV-1 genotypic testing 
includes: (1) assessing whether the 
pattern or absence of a pattern in the 
mutations is consistent with the pa-
tient’s antiretroviral therapy history; 
(2) recognizing that in the absence 
of drug (selection pressure), resistant 
strains may be present at levels below 
the limit of detection of the test (ana-
lyzing stored samples, collected under 
selection pressure, could be useful in 
this setting); and (3) recognizing that 
virologic failure of the first regimen 
typically involves HIV-1 isolates with 
resistance to only 1 or 2 of the drugs in 
the regimen (in this setting, resistance 
develops most commonly to lamivu- 
dine or emtricitabine or the nonnucle-
oside analogue reverse transcriptase 
inhibitors [NNRTIs]).

The absence of detectable viral re-
sistance after treatment failure may 
result from any combination of the 
following factors: the presence of drug-
resistant minority viral populations, 
nonadherence to medications, labora-
tory error, lack of current knowledge 
of the association of certain mutations 
with drug resistance, the occurrence of 
relevant mutations outside the regions 

targeted by routine resistance assays, 
drug-drug interactions leading to sub-
therapeutic drug levels, and possibly 
compartmental issues, indicating that 
drugs may not reach optimal levels in 
specific cellular or tissue reservoirs.

For more in-depth reading and an 
extensive reference list, see the 2008 
IAS–USA panel recommendations for 
resistance testing (Hirsch MS et al, Clin 
Infect Dis, 2008;47:266-285) and 2010 
IAS–USA panel recommendations for 
antiretroviral therapy (Thompson MA 
et al, JAMA, 2010;304[3]:321-333). Up-
dates are posted periodically at www.
iasusa.org.

Comments

Please send your evidence-based 
comments, including relevant ref-
erence citations, to the IAS–USA at 
resistance2011“at”iasusa.org or by 
fax at 415-544-9401. Please include 
your name and institution.

Reprint Requests

The Drug Resistance Mutations Group 
welcomes interest in the mutations 
figures as an educational resource for 
practitioners and encourages dissemi-
nation of the material to as broad an 
audience as possible. However, per-
mission is required to reprint the fig-
ures and no alterations in format or 
the content can be made.

Requests to reprint the material 
should include the name of the pub-
lisher or sponsor, the name or a de-
scription of the publication in which 
you wish to reprint the material, the 
funding organization(s), if applicable, 
and the intended audience of the publi-
cation. Requests to make any minimal 
adaptations of the material should in-
clude the former, plus a detailed expla-
nation of how the adapted version will 
be changed from the original version 
and, if possible, a copy of the proposed 
adaptation. To ensure the integrity of 
the mutations figures, IAS–USA policy 
is to grant permission for only minor, 
preapproved adaptations of the figures 
(eg, an adjustment in size). Minimal 
adaptations only will be considered; 
no alterations of the content of the fig-

ures or user notes will be permitted. 
Please note that permission will be 

granted only for requests to reprint or 
adapt the most current version of the 
mutations figures as they are posted 
on the Web site (www.iasusa.org). Be-
cause scientific understanding of HIV 
drug resistance evolves rapidly and 
the goal of the Drug Resistance Muta-
tions Group is to maintain the most up- 
to-date compilation of mutations for 
HIV clinicians and researchers, publi-
cation of out-of-date figures is counter-
productive. If you have any questions 
about reprints or adaptations, please 
contact us. 
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MUTATIONS IN THE REVERSE TRANSCRIPTASE GENE ASSOCIATED WITH RESISTANCE TO REVERSE TRANSCRIPTASE INHIBITORS

Nucleoside and Nucleotide Analogue Reverse Transcriptase Inhibitors (nRTIs)a

Nonnucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs)a,m

Multi-nRTI Resistance: 69 Insertion Complexb (affects all nRTIs currently approved by the US FDA)

Multi-nRTI Resistance: 151 Complexc (affects all nRTIs currently approved by the US FDA except tenofovir)

Multi-nRTI Resistance: Thymidine Analogue-Associated Mutationsd,e (TAMs; affect all nRTIs currently approved 
by the US FDA)
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MUTATIONS IN THE PROTEASE GENE ASSOCIATED WITH RESISTANCE TO PROTEASE INHIBITORSp,q,r
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MUTATIONS IN THE INTEGRASE GENE ASSOCIATED WITH RESISTANCE TO INTEGRASE INHIBITORS
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MUTATIONS IN THE ENVELOPE GENE ASSOCIATED WITH RESISTANCE TO ENTRY INHIBITORS 
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Amino acid, wild-type

Amino acid position

Amino acid substitution
conferring resistance

Insertion

MUTATIONS

Amino acid abbreviations: A, alanine; C, cysteine; D, aspartate; 
E, glutamate; F, phenylalanine; G, glycine; H, histidine; 
I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; 
P, proline; Q, glutamine; R, arginine; S, serine; T, threonine;
V, valine; W, tryptophan; Y, tyrosine.
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User Notes
a. Some nucleoside (or nucleotide) analogue 
reverse transcriptase inhibitor (nRTI) muta-
tions, like T215Y and H208Y,1 may lead to 
viral hypersusceptibility to the nonnucleo-
side analogue reverse transcriptase inhibi-
tors (NNRTIs), including etravirine,2 in nRTI-
treated individuals. The presence of these 
mutations may improve subsequent virologic 
response to NNRTI-containing regimens (ne-
virapine or efavirenz) in NNRTI-naive indi-
viduals,3-7 although no clinical data exist for 
improved response to etravirine in NNRTI-
experienced individuals.

b. The 69 insertion complex consists of a sub-
stitution at codon 69 (typically T69S) and an 
insertion of 2 or more amino acids (S-S, S-A, 
S-G, or others). The 69 insertion complex is as-
sociated with resistance to all nRTIs currently 
approved by the US FDA when present with 
1 or more thymidine analogue–associated 
mutations (TAMs) at codons 41, 210, or 215.8 
Some other amino acid changes from the 
wild-type T at codon 69 without the insertion 
may be associated with broad nRTI resistance.

c. Tenofovir retains activity against the Q151M 
complex of mutations.8

d. Mutations known to be selected by thymi-
dine analogues (M41L, D67N, K70R, L210W, 
T215Y/F, and K219Q/E, termed TAMs) also 
confer reduced susceptibility to all approved 
nRTIs.9 The degree to which cross-resistance 
is observed depends on the specific muta-
tions and number of mutations involved.10-13 
Mutations at the C-terminal reverse transcrip-
tase domains (amino acids 293-560) outside 
of regions depicted on the figure bars may 
prove to be important for HIV-1 drug resis-
tance. However, to date clinical relevance of 
these in vitro findings has not been estab-
lished14 because the connection domain mu-
tations arise mostly in conjunction with TAMs 
and M184V and do not seem to have major 
independent effects.15

e. Although reverse transcriptase changes as-
sociated with the E44D and V118I mutations 
may have an accessory role in increased resis-
tance to nRTIs in the presence of TAMs, their 
clinical relevance is very limited.16-18

f. The M184V mutation alone does not ap-
pear to be associated with a reduced virologic 
response to abacavir in vivo.19,20 When asso-
ciated with TAMs, M184V increases abacavir 
resistance.19,20 

g. As with tenofovir, the K65R mutation may 
be selected by didanosine, abacavir, or stavu-
dine (particularly in patients with nonsubtype-B 
clades) and is associated with decreased viral 
susceptibility to these drugs.19,21,22 Data are 
lacking on the potential negative impact of 
K65R on clinical response to didanosine.

h. The presence of 3 of the following mutations—
M41L, D67N, L210W, T215Y/F, K219Q/E—is as-
sociated with resistance to didanosine.23 The 
presence of K70R or M184V alone does not 
decrease virologic response to didanosine.24 

i. K65R is selected frequently (4%−11%) in 
patients with nonsubtype-B clades for whom 
stavudine-containing regimens are failing in 
the absence of tenofovir.25,26

j. The presence of M184V appears to delay or 
prevent emergence of TAMs.27 This effect may 
be overcome by an accumulation of TAMs or 
other mutations.

k. The T215A/C/D/E/G/H/I/L/N/S/V substitu-
tions are revertant mutations at codon 215 
that confer increased risk of virologic failure of 
zidovudine or stavudine in antiretroviral-naive 
patients.28-30 The T215Y mutant may emerge 
quickly from one of these mutations in the 
presence of zidovudine or stavudine.31,32

l. The presence of K65R is associated with a 
reduced virologic response to tenofovir.8 A re-
duced response also occurs in the presence of 
3 or more TAMs inclusive of either M41L or 
L210W.8 The presence of TAMs or combined 
treatment with zidovudine prevents the emer-
gence of K65R in the presence of tenofovir.33-35

m. The sequential use of nevirapine and efavi-
renz (in either order) is not recommended be-
cause of cross-resistance between these drugs.36

n. Resistance to etravirine has been extensively 
studied only in the context of coadministration 
with darunavir/ritonavir. In this context, muta-
tions associated with virologic outcome have 
been assessed and their relative weights (or 
magnitudes of impact) assigned. In addition, 
phenotypic cutoff values have been calculated, 
and assessment of genotype-phenotype cor-
relations from a large clinical database have 
determined relative importance of the various 
mutations. These 2 approaches are in agree-
ment for many, but not all, mutations and 
weights.37-39 Asterisks (*) are used to emphasize 
higher relative weights with regard to reduced 
susceptibility and reduced clinical response 
compared with other etravirine mutations.40 
The single mutations L100I*, K101P*, and 
Y181C*/I*/V* reduce clinical utility. The pres-
ence of K103N alone does not affect etravirine 
response.41 Accumulation of several mutations 
results in greater reductions in susceptibility 
and virologic response than do single muta-
tions.42-44

o. A total of 15 mutations (K101E/P, E138A/
G/K/Q/R, V179L, Y181C/I/V, H221Y, F227C, 
and  M230I/L) associated with decreased sus-
ceptibility to rilpivirine have been described 
by in vitro studies and in patients in whom 
rilpivirine was failing.45-53 These mutations 
differ quantitatively in their impact on re-
sistance. E138K, especially with M184I/V, is 

found most frequently in patients in whom 
rilpivirine is failing, and is thus marked with 
an asterisk (*) because the combination of 
E138K and M184I showed 6.7-fold reduced 
phenotypic susceptibility to rilpivirine com-
pared with 2.8-fold reduction for E138K 
alone.45,53 The K103N substitution alone was 
not associated with reduced susceptibility to 
rilpivirine.52,53

p. Often, numerous mutations are necessary 
to substantially impact virologic response to a 
ritonavir-boosted protease inhibitor (PI).54 In 
some specific circumstances, atazanavir might 
be used unboosted. In such cases, the muta-
tions that are selected are the same as with 
ritonavir-boosted atazanavir, but the relative 
frequency of mutations may differ.

q. Resistance mutations in the protease gene 
are classified as “major” or “minor.”

Major mutations in the protease gene 
(positions in bold type) are defined as 
those selected first in the presence of 
the drug or those substantially reduc-
ing drug susceptibility. These mutations 
tend to be the primary contact residues 
for drug binding. 

Minor mutations generally emerge lat-
er than major mutations and by them-
selves do not have a substantial effect 
on phenotype. They may improve repli-
cation of viruses containing major muta-
tions. Some minor mutations are pres-
ent as common polymorphic changes in 
HIV-1 nonsubtype-B clades.

r. Ritonavir is not listed separately, as it is cur-
rently used only at low dose as a pharmaco-
logic booster of other PIs. 

s. Many mutations are associated with ata-
zanavir resistance. Their impacts differ, with 
I50L, I84V, and N88S having the greatest ef-
fect. Higher atazanavir levels obtained with 
ritonavir boosting increase the number of 
mutations required for loss of activity. The 
presence of M46I plus L76V might increase 
susceptibility to atazanavir when no other re-
lated mutations are present.55

t. HIV-1 RNA response to ritonavir-boosted 
darunavir correlates with baseline suscepti-
bility and the presence of several specific PI 
mutations. Reductions in response are asso-
ciated with increasing numbers of the muta-
tions indicated in the figure bar. The negative 
impact of the protease mutations I47V, I54M, 
T74P, and I84V and the positive impact of 
the protease mutation V82A on virologic re-
sponse to darunavir/ritonavir were shown in 
2 data sets independently.56,57 Some of these 
mutations appear to have a greater effect on 
susceptibility than others (eg, I50V vs V11I). 
A median darunavir phenotypic fold-change 
greater than 10 (low clinical cutoff) occurs 
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with 3 or more of the 2007 IAS–USA muta-
tions listed for darunavir58 and is associated 
with a diminished virologic response.59 

u. The mutations depicted on the figure bar 
cannot be considered comprehensive be-
cause little relevant research has been report-
ed in recent years to update the resistance 
and cross-resistance patterns for this drug. 

v. In PI-experienced patients, the accumula-
tion of 6 or more of the mutations indicated 
on the figure bar is associated with a reduced 
virologic response to lopinavir/ritonavir.60,61 
The product information states that accumu-
lation of 7 or 8 mutations confers resistance 
to the drug.62 However, there is emerging evi-
dence that specific mutations, most notably 
I47A (and possibly I47V) and V32I, are asso-
ciated with high-level resistance.63-65 The ad-
dition of L76V to 3 PI resistance–associated 
mutations substantially increases resistance 
to lopinavir/ritonavir.55 

w. In some nonsubtype-B HIV-1, D30N is se-
lected less frequently than are other PI muta-
tions.66

x. Clinical correlates of resistance to tiprana-
vir are limited by the paucity of clinical trials 
and observational studies of the drug. The 
available genotypic scores have not been vali-
dated on large, diverse patient populations. 
The presence of mutations L24I, I50L/V, 
F53Y/L/W, I54L, and L76V have been associ-
ated with improved virologic response to tip-
ranavir in some studies.67-69

y. Resistance to enfuvirtide is associated pri-
marily with mutations in the first heptad re-
peat (HR1) region of the gp41 envelope gene. 
However, mutations or polymorphisms in 
other regions of the envelope (eg, the HR2 
region or those yet to be identified) as well 
as coreceptor usage and density may affect 
susceptibility to enfuvirtide.70-72 

z. The activity of CC chemokine receptor 5 
(CCR5) antagonists is limited to patients with 
virus that uses only CCR5 for entry (R5 virus). 
Viruses that use both CCR5 and CXC chemo-
kine receptor 4 (CXCR4; termed dual/mixed 
[D/M]) or only CXCR4 (X4 virus) do not re-
spond to treatment with CCR5 antagonists. 
Virologic failure of these drugs frequently is 
associated with outgrowth of D/M or X4 vi-
rus from a preexisting minority population 
present at levels below the limit of assay de-
tection. Mutations in HIV-1 gp120 that allow 
the virus to bind to the drug-bound form of 
CCR5 have been described in viruses from 
some patients whose virus remained R5 after 
virologic failure of a CCR5 antagonist. Most 
of these mutations are found in the V3 loop, 
the major determinant of viral tropism. There 
is as yet no consensus on specific signature 
mutations for CCR5 antagonist resistance, 
so they are not depicted in the figure. Some 

CCR5 antagonist-resistant viruses selected in 
vitro have shown mutations in gp41 without 
mutations in V3; the clinical significance of 
such mutations is not yet known.

aa. Raltegravir failure is associated with inte-
grase mutations in at least 3 distinct genetic 
pathways defined by 2 or more mutations 
including (1) a signature (major) mutation at 
Q148H/K/R, N155H, or Y143R/H/C; and (2) 
1 or more additional minor mutations. Mi-
nor mutations described in the Q148H/K/R 
pathway include L74M plus E138A, E138K, 
or G140S. The most common mutational pat-
tern in this pathway is Q148H plus G140S, 
which also confers the greatest loss of drug 
susceptibility. Mutations described in the 
N155H pathway include this major mutation 
plus either L74M, E92Q, T97A, E92Q plus 
T97A, Y143H, G163K/R, V151I, or D232N.73 
The Y143R/H/C mutation is uncommon.74-78 

Another major mutation, E92Q, has also 
been described.79-81
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NEW HIV and Pain
Jessica S. Merlin, MD, MBA, and Rodney Tucker, MD, MMM 
CME Credit Available: 2.5 AMA PRA Category 1 CreditsTM 
Level: Advanced

Patients with HIV infection now have near-normal life expectan-
cies, but 40% to 55% still report pain. Various comorbid condi-
tions, including cardiovascular disease, frailty, and non–AIDS-de-
fining malignancies, are prevalent in the HIV-infected population, 
which also has high rates of substance abuse. For this reason, 
HIV medical practitioners have become HIV primary care doctors 
who must address all of these issues. Dr Jessica Merlin and Dr 
Rodney Tucker present an approach to the treatment of pain, 
an underdiagnosed and undertreated condition in HIV-infected 
patients.

Quality Measures in HIV Care
Kathleen Clanon, MD, and Steven Bromer, MD 
CME Credit Available: 1.75 AMA PRA Category 1 Credits™
Level: Advanced

Choosing a set of quality of care measures and a strategy for 
using them is an investment in time and resources—the result-
ing information can be either a powerful tool for improving care 
or a useless paper exercise. Dr Kathleen Clanon and Dr Steven 
Bromer provide guidelines and advice on selecting performance 
measures, determining data collection methods, and using and 
leveraging the eventual results to improve care. 

Initiation of Antiretroviral Therapy in Treatment-Naive 
HIV-Infected Patients
Greer A. Burkholder, MD 
CME Credit Available: 1.75 AMA PRA Category 1 Credits™
Level: Advanced

What impact does the timing of antiretroviral therapy (ART) ini-
tiation have on the prognosis of HIV-infected patients? Dr Greer 
Burkholder discusses the influence of CD4+ cell count, plasma 
HIV RNA level, AIDS-related and non–AIDS-related comorbidities, 
pregnancy, and patient willingness to take lifelong medications. 
Because of the evolving nature of guidelines and evidence re-
garding timing of ART, HIV practitioners need to update their 
knowledge on this topic regularly.

New Treatments for Hepatitis C Virus Infection
Melissa K. Osborn, MD 
CME Credit Available: 1.5 AMA PRA Category 1 Credits™
Level: Advanced

Dr Melissa Osborn explains how the 2 new HCV protease in-
hibitors, telaprevir and boceprevir—direct-acting antiviral agents 
that inhibit viral replication—will affect therapy for treatment- 
naive and treatment-experienced patients with HCV infection. 
Her presentation describes the effects of telaprevir and bocepre-
vir on sustained virologic response (SVR) rates, and includes re-
sponse-guided treatment algorithms. 

Smoking Cessation
Steven A. Schroeder, MD and Margaret Meriwether, PhD 
CME Credit Available: 1.0 AMA PRA Category 1 Credits™

What are the obstacles to smoking cessation, and how can they 
be overcome? Dr Steven Schroeder and Dr Margaret Meriwether 
discuss the medical practitioner’s role in assisting HIV-infected 
patients with smoking-cessation–related issues such as weight 
gain and fatalism. They introduce treatment modalities that in-
crease the likelihood of a successful quit attempt.
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