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This July 2014 edition of the IAS–USA 
drug resistance mutations list updates 
the figures last published in March 
2013.1

The following mutations have been 
added to existing classes or drugs: 
K65E/N has been added to the bars 
for the nucleoside and nucleotide ana-
logue reverse transcriptase inhibitors 
(nRTIs) abacavir, didanosine, emtric-
itabine, lamivudine, stavudine, and 
tenofovir2; L100I has been added to the 
bar for the nonnucleoside analogue 
reverse transcriptase inhibitor (NNRTI) 
rilpivirine3,4; and F121Y has been added 
to the bars for the integrase strand 
trans  fer inhibitors (InSTIs) dolutegravir, 
elvitegravir, and raltegravir.5,6 With 
regard to protease inhibitors (PIs), it 
cannot be excluded that drug resis-
tance may be selected for outside the 
protease encoding region.7,8

Methods

The IAS–USA Drug Resistance Mutations 
Group is an independent, volunteer 
pan el of experts charged with deliver - 
ing accurate, unbiased, and evidence-
based information on these mutations 
to HIV clinical practitioners. As with all 
IAS–USA volunteer panels, members 
are rotated on a structured, planned 
basis. The group reviews new data 
on HIV drug resistance to maintain a 
current list of mutations associated 
with clinical resistance to HIV. This list 
includes mutations that may contribute 
to a reduced virologic response to a drug.

In addition, the group considers 
only data that have been published 
or have been presented at a scientific 
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conference. Drugs that have been 
approved by the US Food and Drug 
Administration (FDA) as well as any 
drugs available in expanded access 
programs are included (listed in alpha-
betical order by drug class). User notes 
provide additional information as nec-
essary. Although the Drug Resistance 
Mutations Group works to maintain 
a complete and current list of these 
mutations, it cannot be assumed that 
the list presented here is exhaustive.

Identification of Mutations

The mutations listed are those that 
have been identified by 1 or more of 
the following criteria: (1) in vitro pas - 
sage experiments or validation of 
contribution to resistance by using 
site-directed mutagenesis; (2) suscep-
tibility testing of laboratory or clinical 
isolates; (3) nucleotide sequencing 
of viruses from patients in whom the 
drug is failing; (4) association stud-
ies between genotype at baseline and 
virologic response in patients exposed 
to the drug.

The development of more recently 
approved drugs that cannot be tested 
as monotherapy precludes assess-
ment of the impact of resistance on 
antiretroviral activity that is not seri-
ously confounded by activity of other 
drug components in the background 
regimen. Readers are encouraged to 
consult the literature and experts in 
the field for clarification or more infor-
mation about specific mutations and 
their clinical impact. Polymorphisms 
associated with impaired treatment 
responses that occur in otherwise 

wild-type viruses should not be used 
in epidemiologic analyses to identify 
transmitted HIV-1 drug resistance.

Clinical Context

The figures are designed for practi - 
tioners to use in identifying key muta  - 
tions associated with antiretroviral  
drug resistance and in making thera-
peutic decisions. In the context of 
making clinical decisions regarding  
antiretroviral therapy, evaluating the  
results of HIV-1 genotypic testing in - 
cludes: (1) assessing whether the pattern 
or absence of a pattern in the muta-
tions is consistent with the patient’s 
antiretroviral therapy history; (2) rec-
ognizing that in the absence of drug 
(selection pressure), resistant strains 
may be present at levels below the 
limit of detection of the test (analyz-
ing stored samples, collected under 
selection pressure, could be useful 
in this setting); and (3) recognizing 
that virologic failure of the first regi-
men typically involves HIV-1 isolates 
with resistance to only 1 or 2 of the 
drugs in the regimen (in this setting, 
resistance develops most commonly 
to lamivudine or emtricitabine or the 
NNRTIs).

The absence of detectable viral re-  
sistance after treatment failure may 
result from any combination of the 
following factors: the presence of drug-
resistant minority viral populations, a 
prolonged interval between the time 
of antiretroviral drug discontinuation 
and genotypic testing, nonadherence to 
medications, laboratory error, lack of 
current knowledge of the association 
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of certain mutations with drug re-
sistance, the occurrence of relevant 
mutations outside the regions targeted 
by routine resistance assays, drug-drug 
interactions leading to subtherapeutic 
drug levels, and possibly compartmen-
tal issues, indicating that drugs may 
not reach optimal levels in specific cel-
lular or tissue reservoirs.

For more in-depth reading and an 
extensive reference list, see the 2008 
IAS–USA panel recommendations for 
resistance testing9 and 2014 IAS–USA 
panel recommendations for antiret-
roviral therapy.10 Updates are posted 
periodically at www.iasusa.org.

Comments

Please send your evidence-based com-
ments, including relevant reference 
citations, to the journal“at”iasusa.org 
or by fax to 415-544-9401.

Reprint Requests

The Drug Resistance Mutations Group 
welcomes interest in the mutations 
figures as an educational resource 
for practitioners and encourages dis-
semination of the material to as broad 
an audience as possible. However, per-
mission is required to reprint the 
figures and no alterations in format 
or the content can be made.

Requests to reprint the material 
should include the name of the publisher 
or sponsor, the name or a description 
of the publication in which you wish 
to reprint the material, the funding 
organization(s), if applicable, and the 
intended audience. Requests to make 
any minimal adaptations of the mate-
rial should include the former, plus a 
detailed explanation of the adaptation(s) 
and, if possible, a copy of the proposed 
adaptation. To ensure the integrity of the 
mutations figures, IAS–USA policy is to 
grant permission for only minor, preap-
proved adaptations of the figures (eg, an 
adjustment in size). Minimal adaptations 
only will be considered; no alterations of 
the content of the figures or user notes 
will be permitted.

Permission will be granted only for  
requests to reprint or adapt the most 
current version of the mutations figures 

as they are posted at www.iasusa.org. 
Because scientific understanding of HIV 
drug resistance evolves rapidly and the 
goal of the Drug Resistance Mutations 
Group is to maintain the most up-to-
date compilation of mutations for HIV 
clinicians and researchers, publication 
of out-of-date figures is counterproduc-
tive. If you have any questions about 
reprints or adaptations, please contact 
the IAS–USA.         
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MUTATIONS IN THE REVERSE TRANSCRIPTASE GENE ASSOCIATED WITH RESISTANCE TO REVERSE TRANSCRIPTASE INHIBITORS
Nucleoside and Nucleotide Analogue Reverse Transcriptase Inhibitors (nRTIs)a

Multi-nRTI Resistance: 69 Insertion Complexb (affects all nRTIs currently approved by the US FDA)
M A ▼ K L T K
41 62 69 70 210 215 219
L V  Insert R W Y Q

F E

Multi-nRTI Resistance: 151 Complexc (affects all nRTIs currently approved by the US FDA except tenofovir)
A V F F Q
62 75 77 116 151
V I L Y M

Multi-nRTI Resistance: Thymidine Analogue-Associated Mutationsd,e (TAMs; affect all nRTIs currently approved by the US FDA)
M D K L T K
41 67 70 210 215 219
L N R W Y Q

F E

K L Y M
Abacavirf,g 65 74 115 184

R V F V
E
N

K L
Didanosineg,h 65 74

R V
E
N

K M
Emtricitabine 65 184

R V
E I
N

K M
Lamivudine 65 184

R V
E I
N

M K D K L T K
Stavudined,e,g,i,j,k 41 65 67 70 210 215 219

L R N R W Y Q
E F E
N

K K
Tenofovirl 65 70

R E
E
N

M D K L T K
Zidovudined,e,j,k 41 67 70 210 215 219

L N R W Y Q
F E

Nonnucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs)a,m

L K K V V Y Y G P M
Efavirenz 100 101 103 106 108 181 188 190 225 230

I P N M I C L S H L
S I A

V A L K V E V Y G M
Etravirinen 90 98 100 101 106 138 179 181 190 230

I G  I* E I A D  C* S L
H G F  I* A

 P* K T  V*
Q

L K K V V Y Y G M
Nevirapine 100 101 103 106 108 181 188 190 230

I P N A I C C A L
S M I L

H

L K E V Y Y H F M
Rilpivirineo 100 101 138 179 181 188 221 227 230

I E A L C L Y C I
P G I L

K V
Q
R

K ▼ L
65 100
R I*

Amino acid, wild-type

MUTATIONS

Amino acid position
Asteriskn

Insertion

Amino acid substitution
conferring resistance

Amino acid abbreviations: A, alanine; C, cysteine; D, aspartate;  
E, glutamate; F, phenylalanine; G, glycine; H, histidine;  I, isoleucine;  
K, lysine; L, leucine; M, methionine; N, asparagine; P, proline;  
Q, glutamine; R, arginine; S, serine; T, threonine;  V, valine;  
W, tryptophan; Y, tyrosine.
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MUTATIONS IN THE PROTEASE GENE ASSOCIATED WITH RESISTANCE TO PROTEASE INHIBITORSp,q,r

L G K L V L E M M G I F I D I I A G V I I N L I
Atazanavir  

+/- ritonavirs
10 16 20 24 32 33 34 36 46 48 50 53 54 60 62 64 71 73 82 84 85 88 90 93
I E R I I I Q I I V L L L E V L V C A V V S M L
F M F L L Y V M I S T M
V I V V M V T T F
C T T L A I

V A

V V L I I I T L I L
Darunavir/ 

ritonavirt
11 32 33 47 50 54 74 76 84 89
I I F V V M P V V V

L

L V M I I I G L V I L
Fosamprenavir/ 

ritonavir
10 32 46 47 50 54 73 76 82 84 90
F I I V V L S V A V M
I L V F
R M S
V T

L K L V M M I A G L V V I L
Indinavir/ 
ritonaviru

10 20 24 32 36 46 54 71 73 76 77 82 84 90
I M I I I I V V S V I A V M
R R L T A F
V T

L K L V L M I I F I L A G L V I L
Lopinavir/ 
ritonavirv

10 20 24 32 33 46 47 50 53 54 63 71 73 76 82 84 90
F M I I F I V V L V P V S V A V M
I R L A L T F
R A T
V M S

T
S

L D M M A V V I N L
Nelfinaviru,w 10 30 36 46 71 77 82 84 88 90

F N I I V I A V D M
I L T F S

T
S

L L G I I A G V V I L
Saquinavir/ 

ritonaviru
10 24 48 54 62 71 73 77 82 84 90
I I V V V V S I A V M
R L T F
V T

S

L L M K M I I Q H T V N I L
Tipranavir/ 

ritonavirx
10 33 36 43 46 47 54 58 69 74 82 83 84 89
V F I T L V A E K P L D V I

L M R T M
V V V

MUTATIONS IN THE INTEGRASE GENE ASSOCIATED WITH RESISTANCE TO INTEGRASE STRAND TRANSFER INHIBITORSaa

F E G Q
Dolutegravirbb 121 138 140 148

Y A S H
K A

T E T F S Q N
Elvitegravircc 66 92 97 121 147148 155

I Q A Y G R H
A G H
K K

L E T F E G Y Q N
Raltegravirdd 74 92 97 121 138 140 143 148 155

M Q A Y A A R H H
K S H K

C R

MUTATIONS IN THE ENVELOPE GENE ASSOCIATED WITH RESISTANCE TO ENTRY INHIBITORS
G I V Q Q N N

Enfuvirtidey 36 37 38 39 40 42 43
D V A R H T D
S M

E

Maravirocz       See User Note
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User Notes
a. Some nucleoside (or nucleotide) analogue 
reverse transcriptase inhibitor (nRTI) muta-
tions, like T215Y and H208Y,1 may lead to vi-
ral hypersusceptibility to the nonnucleoside  
analogue reverse transcriptase inhibitors 
(NNRTIs), including etravirine,2 in nRTI-treated 
individuals. The presence of these mutations 
may improve subsequent virologic response to 
NNRTI-containing regimens (nevirapine or efa-
virenz) in NNRTI-naive individuals,3-7 although 
no clinical data exist for improved response to 
etravirine in NNRTI-experienced individuals. 
Mutations at the C-terminal reverse transcrip-
tase domains (amino acids 293-560) outside of 
regions depicted on the figure bars may prove 
to be important for nRTI and NNRTI HIV-1 drug 
resistance. The clinical relevance of these con-
nection domain mutations arises mostly in 
conjunction with thymidine analogue-associat-
ed mutations (TAMs) and M184V and have not 
been associated with increased rates of viro-
logic failure of etravirine or rilpivirine in clini-
cal trials.8-10 K65E/N variants are increasingly 
reported in patients experiencing treatment 
failure with tenofovir, stavudine, or didanosine. 
K65E usually occurs in mixtures with wild type. 
K65N gives an approximately 4-fold decrease 
in susceptibility. Patient-derived viruses with 
K65E and site-directed mutations replicate 
very poorly in vitro; as such, no susceptibility 
testing can be performed.11,12

b. The 69 insertion complex consists of a 
substitution at codon 69 (typically T69S) and 
an insertion of 2 or more amino acids (S-S, 
S-A, S-G, or others). The 69 insertion com-
plex is associated with resistance to all nRTIs 
currently approved by the US FDA when 
present with 1 or more TAMs at codons 41, 
210, or 215.13 Some other amino acid chang-
es from the wild-type T at codon 69 without 
the insertion may be associated with broad 
nRTI resistance.

c. Tenofovir retains activity against the 
Q151M complex of mutations.13 Q151M is 
the most important mutation in the com-
plex (ie, the other mutations in the complex 
[A62V, V75I, F77L, and F116Y] in isolation 
may not reflect multidrug resistance).

d. Mutations known to be selected by TAMs 
(ie, M41L, D67N, K70R, L210W, T215Y/F, and 
K219Q/E) also confer reduced susceptibility 
to all currently approved nRTIs.14 The degree 
to which cross-resistance is observed de-
pends on the specific mutations and number 
of mutations involved.15-18

e. Although reverse transcriptase changes as-
sociated with the E44D and V118I mutations 
may have an accessory role in increased re-
sistance to nRTIs in the presence of TAMs, 
their clinical relevance is very limited.19-21

f. The M184V mutation alone does not ap-
pear to be associated with a reduced virologic  

response to abacavir in vivo. When associ-
ated with TAMs, M184V increases abacavir 
resistance.22,23

g. As with tenofovir, the K65R mutation 
may be selected by didanosine, abacavir, 
or stavudine (particularly in patients with 
nonsubtype-B clades) and is associated 
with decreased viral susceptibility to these 
drugs.22,24,25 Data are lacking on the poten-
tial negative impact of K65R on clinical re-
sponse to didanosine.

h. The presence of 3 of the following mu-
tations—M41L, D67N, L210W, T215Y/F, 
K219Q/E—is associated with resistance to di-
danosine.26 The presence of K70R or M184V 
alone does not decrease virologic response 
to didanosine.27

i. K65R is selected frequently (4%−11%) 
in patients with some nonsubtype-B clades 
for whom stavudine-containing regimens are 
failing in the absence of tenofovir.28,29

j. The presence of M184V appears to delay 
or prevent emergence of TAMs.30 This ef-
fect may be overcome by an accumulation of 
TAMs or other mutations.

k. The T215A/C/D/E/G/H/I/L/N/S/V substitu-
tions are revertant mutations at codon 215 
that confer increased risk of virologic failure 
of zidovudine or stavudine in antiretroviral-
naive patients.31,32 The T215Y mutant may 
emerge quickly from one of these mutations 
in the presence of zidovudine or stavudine.33

l. The presence of K65R is associated with a 
reduced virologic response to tenofovir.13 A 
reduced response also occurs in the presence 
of 3 or more TAMs inclusive of either M41L 
or L210W.13 The presence of TAMs or com-
bined treatment with zidovudine prevents 
the emergence of K65R in the presence of 
tenofovir.34-36 

m. There is no evidence for the utility of efa-
virenz, nevirapine, or rilpivirine in patients 
with NNRTI resistance.37

n. Resistance to etravirine has been exten-
sively studied only in the context of coad-
ministration with darunavir/ritonavir. In this 
context, mutations associated with virologic 
outcome have been assessed and their rela-
tive weights (or magnitudes of impact) as-
signed. In addition, phenotypic cutoff values 
have been calculated, and assessment of  
genotype-phenotype correlations from a 
large clinical database have determined  
relative importance of the various mutations. 
These 2 approaches are in agreement for  
many, but not all, mutations and weights.38-40 
Asterisks (*) are used to emphasize higher 
relative weights with regard to reduced sus-
ceptibility and reduced clinical response 
compared with other etravirine mutations.41 
The single mutations L100I*, K101P*, and 

Y181C*/I*/V* reduce clinical utility. The pres-
ence of K103N alone does not affect etravirine 
response.42 Accumulation of several muta-
tions results in greater reductions in suscep-
tibility and virologic response than do single 
mutations.43-45 

o. Fifteen mutations have been associated 
with decreased rilpivirine susceptibility 
(K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, 
H221Y, F227C, and M230I/L).46-48 A 16th 
mutation, Y188L, reduces rilpivirine suscep-
tibility 6-fold.49 K101P and Y181I/V reduce 
rilpivirine susceptibility about 50-fold and 15- 
fold, respectively, but are uncommonly ob-
served in patients receiving rilpivirine.50-52 
K101E, E138K, and Y181C, each of which 
reduces rilpivirine susceptibility 2.5-fold to 
3-fold, occur commonly in patients receiv-
ing rilpivirine. E138K and to a lesser extent 
K101E usually occur in combination with 
the nRTI resistance mutation M184I, which 
alone does not reduce rilpivirine susceptibil-
ity. When M184I is combined with E138K or 
K101E, rilpivirine susceptibility is reduced 
about 7-fold and 4.5-fold, respectively.52-55 
The combinations of reverse transcriptase 
mutations L100I + K103N/S and L100I +  
K103R + V179D were strongly associated 
with reduced susceptibility to rilpivirine. 
However, for isolates harboring the L100I/
K103N/R/S or V179D as single mutations, no 
reduction in susceptibility was detected.48,56

p. Often, numerous mutations are necessary 
to substantially impact virologic response to 
a ritonavir-boosted protease inhibitor (PI).57 

In some specific circumstances, atazanavir 
might be used unboosted. In such cases, the 
mutations that are selected are the same as 
with ritonavir-boosted atazanavir, but the rel-
ative frequency of mutations may differ.

q. Resistance mutations in the protease gene 
are classified as “major” or “minor.”

Major mutations in the protease gene (posi-
tions in bold type) are defined as those se-
lected first in the presence of the drug or 
those substantially reducing drug susceptibil-
ity. These mutations tend to be the primary 
contact residues for drug binding. 

Minor mutations generally emerge later than 
major mutations and by themselves do not 
have a substantial effect on phenotype. They 
may improve replication of viruses contain-
ing major mutations. Some minor mutations 
are present as common polymorphic chang-
es in HIV-1 nonsubtype-B clades.

Mutations in the cytoplasmic tail of gp41 of 
env or mutations in gag cleavage sites may 
confer resistance to all protease inhibitors and 
may emerge before mutations in protease 
do.58,59 A large proportion of virus samples 
from patients with confirmed virologic fail-
ure on a PI-containing regimen is not found 
to have PI resistance mutations. Preliminary 
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data from recent studies suggest that several 
mutations in the Gag protein60 and in the 
cytoplasmic tail of the Env protein59 may be 
responsible for reduced PI susceptibility in 
a subset of these patients.

r. Ritonavir is not listed separately, as it is 
currently used only at low dose as a pharma-
cologic booster of other PIs. 

s. Many mutations are associated with ata-
zanavir resistance. Their impacts differ, with 
I50L, I84V, and N88S having the greatest ef-
fect. Higher atazanavir levels obtained with 
ritonavir boosting increase the number of 
mutations required for loss of activity. The 
presence of M46I plus L76V might increase 
susceptibility to atazanavir when no other re-
lated mutations are present.61

t. HIV-1 RNA response to ritonavir-boosted da-
runavir correlates with baseline susceptibility 
and the presence of several specific PI muta-
tions. Reductions in response are associated 
with increasing numbers of the mutations in-
dicated in the figure bar. The negative impact 
of the protease mutations I47V, I54M, T74P, 
and I84V and the positive impact of the pro-
tease mutation V82A on virologic response 
to darunavir/ritonavir were shown in 2 data 
sets independently.62,63 Some of these mu-
tations appear to have a greater effect on 
susceptibility than others (eg, I50V vs V11I). 
A median darunavir phenotypic fold-change 
greater than 10 (low clinical cutoff) occurs 
with 3 or more of the 2007 IAS–USA muta-
tions listed for darunavir64 and is associated 
with a diminished virologic response.65 

u. The mutations depicted on the figure bar 
cannot be considered comprehensive because 
little relevant research has been reported in 
recent years to update the resistance and 
cross-resistance patterns for this drug. 

v. In PI-experienced patients, the accumula-
tion of 6 or more of the mutations indicated 
on the figure bar is associated with a reduced 
virologic response to lopinavir/ritonavir.66,67 
The product information states that accumu-
lation of 7 or 8 mutations confers resistance 
to the drug.68 However, there is emerging evi-
dence that specific mutations, most notably 
I47A (and possibly I47V) and V32I, are asso-
ciated with high-level resistance.69-71 The ad-
dition of L76V to 3 PI resistance–associated 
mutations substantially increases resistance 
to lopinavir/ritonavir.61

w. In some nonsubtype-B HIV-1, D30N is se-
lected less frequently than are other PI mu-
tations.72

x. Clinical correlates of resistance to tiprana-
vir are limited by the paucity of clinical trials 
and observational studies of the drug. The 
available genotypic scores have not been val-
idated on large, diverse patient populations. 
The presence of mutations L24I, I50L/V, 

F53Y/L/W, I54L, and L76V have been asso-
ciated with improved virologic response to 
tipranavir in some studies.73-75

y. Resistance to enfuvirtide is associated pri-
marily with mutations in the first heptad re-
peat (HR1) region of the gp41 envelope gene. 
However, mutations or polymorphisms in 
other regions of the envelope (eg, the HR2 
region or those yet to be identified) as well 
as coreceptor usage and density may affect 
susceptibility to enfuvirtide.76-78 

z. The activity of CC chemokine receptor 5 
(CCR5) antagonists is limited to patients with 
virus that uses only CCR5 for entry (R5 virus). 
Viruses that use both CCR5 and CXC chemo-
kine receptor 4 (CXCR4; termed dual/mixed 
[D/M] virus) or only CXCR4 (X4 virus) do not 
respond to treatment with CCR5 antagonists. 
Virologic failure of these drugs frequently is 
associated with outgrowth of D/M or X4 virus 
from a preexisting minority population pres-
ent at levels below the limit of assay detec-
tion. Mutations in HIV-1 gp120 that allow the 
virus to bind to the drug-bound form of CCR5 
have been described in viruses from some 
patients whose virus remained R5 after viro-
logic failure of a CCR5 antagonist. Most of 
these mutations are found in the V3 loop, the 
major determinant of viral tropism. There 
is as yet no consensus on specific signature 
mutations for CCR5 antagonist resistance, 
so they are not depicted in the figure. Some 
CCR5 antagonist-resistant viruses selected in 
vitro have shown mutations in gp41 without 
mutations in V3;79 the clinical significance of 
such mutations is not yet known.

aa. In site-directed mutants and clinical iso-
lates, the mutation F121Y has a profound effect 
on susceptibility to elvitegravir and raltegravir 
and to a lesser extent to dolutegravir.59,60

bb. Cross-resistance studies with raltegravir- 
and elvitegravir-resistant viruses indicate 
that Q148H and G140S in combination with 
mutations L74I/M, E92Q, T97A, E138A/K, 
G140A, or N155H are associated with 5-fold 
to 20-fold reduced dolutegravir susceptibil-
ity80 and reduced virologic suppression in 
patients.81-84 Results of the phase III dolute-
gravir study in antiretroviral treatment-naive 
patients are expected to provide additional 
resistance information. 

cc. Six elvitegravir codon mutations have 
been observed in integrase strand transfer 
inhibitor treatment-naive and -experienced 
patients in whom therapy is failing.85-91 T97A 
results in only a 2-fold change in elvitegravir 
susceptibility and may require additional 
mutations for resistance.88,89 The sequential 
use of elvitegravir and raltegravir (in either 
order) is not recommended because of cross-
resistance between these drugs.88 

dd. Raltegravir failure is associated with in-
tegrase mutations in at least 3 distinct, but 

not exclusive, genetic pathways defined by 2 
or more mutations including (1) a signature 
(major) mutation at Q148H/K/R, N155H, or 
Y143R/H/C; and (2) 1 or more additional mi-
nor mutations. Minor mutations described in 
the Q148H/K/R pathway include L74M plus 
E138A, E138K, or G140S. The most common 
mutational pattern in this pathway is Q148H 
plus G140S, which also confers the great-
est loss of drug susceptibility. Mutations de-
scribed in the N155H pathway include this 
major mutation plus either L74M, E92Q, 
T97A, E92Q plus T97A, Y143H, G163K/R, 
V151I, or D232N.92 The Y143R/H/C mutation 
is uncommon.93-97 E92Q alone reduces sus-
ceptibility to elvitegravir more than 20-fold 
and causes limited (< 5-fold) cross resistance 
to raltegravir.87,98-100 N155H mutants tend to 
predominate early in the course of raltegravir 
failure, but are gradually replaced by viruses 
with higher resistance, often bearing muta-
tions G140S+Q148H/R/K, with continuing 
raltegravir treatment.93 
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