Investigational Approaches to Antiretroviral Therapy: New Strategies and Novel Agents
Joseph J. Eron MD
Professor of Medicine
University of North Carolina
Chapel Hill, North Carolina

Learning Objectives
After attending this presentation, learners will be able to:

▪ List several two-drug combinations that are being evaluated for initial or maintenance therapy
▪ Describe characteristics of the long acting injectable antiretroviral therapy in late-stage development
▪ Describe the mechanisms of action and potential uses of 2 entry inhibitors in development for patients with resistant virus

Outline of the Talk
▪ New Two-drug Strategies for Initial ART and treatment switch (long-acting therapy)
▪ Novel Agents for Resistant Virus
▪ New Agents in Early Development
ARS Question 1

- Your “go to” initial ART is
 1. Bictegravir/FTC/TAF
 2. Dolutegravir/abacavir/lamivudine
 3. Dolutegravir plus TAF (or TDF)/FTC
 4. Elvitegravir/cobi/TAF (or TDF)/FTC
 5. Darunavir/r (or cobi) plus TAF(or TDF)/FTC
 6. Rilpivirine/TAF (or TDF)/FTC
 7. Something else

What is needed for initial therapy?

- We have convenient, safe, effective unboosted integrase inhibitor therapy – do we need something else?
- Alternatives to INSTI – based therapy?
 - NNRTI – based therapy
 - with better tolerability,
 - less resistance and fewer dosing restrictions?
 - PI - based therapy
 - more convenient
 - Fewer drug-drug interactions
- Exposure to fewer agents?
 - Two drug combinations
- Alternative dosing strategies

Two Drug Regimens for Initial Therapy

- Rationale
 - “nuc-sparing” – a need that seems less critical now
 - advanced renal disease or TFV or ABC intolerance
 - Minimize ARV exposure for therapy that will last for decades
 - Cost
- Strategies
 - Boosted PI plus INSTI (NEAT 001)
 - Boosted PI plus 3TC (GARDEL and ANDES studies)
 - Dolutegravir plus 3TC (PADDLE, A5353, GEMINI)
Based on Cochran-Mantel-Haenszel stratified analysis adjusting for the following baseline stratification factors: plasma HIV-1 RNA (≤100,000 vs >100,000 c/mL) and CD4+ cell count (≤200 vs >200 cells/mm³).

Calculated from a repeated measures model adjusting for study, treatment, visit (repeated factor), baseline plasma HIV-1 RNA, baseline CD4+ cell count, treatment and visit interaction, and baseline CD4+ cell count and visit interaction.

ARS Question 2

- Based on the GEMINI 48 week data, in what setting will you use dolutegravir/3TC?
 1. As initial therapy with any baseline viral load
 2. As initial therapy in specific patients with lower viral loads
 3. As maintenance therapy in patients who are suppressed on 3-drug treatment
 4. I will wait until we have longer term (96 week data) with DTG/3TC to decide
 5. Only when insurance companies tell me to use it
 6. Something else
LATTE: Study of Long Acting Cabotegravir and Rilpivirine – 96 week data

Inclusion criteria
• ≥18 years old
• Naive to antiretroviral therapy
• CD4+ ≥200 cells/mm³

Exclusion criteria
• Positive for hepatitis B
• ALT ≥5 × ULN
• Creatinine clearance <50 mL/min

Qualification for maintenance
• HIV-1 RNA <50 c/mL between Week -4 and Day 1

Comparable Response Across Arms
Week 96 HIV-1 RNA <50 c/mL by Snapshot (ITT-ME)

Latte 2 Outcomes at 160 Weeks
256 completed MP with 252 entering EP

Table 1. Snapshot Outcomes at Week 160

<table>
<thead>
<tr>
<th>Outcome at Week 160</th>
<th>QSW IM n (%)</th>
<th>QSW IM n (%)</th>
<th>Optimized QSW IM n (%)</th>
<th>Optimized QSW IM n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 RNA <50 c/mL</td>
<td>N:115</td>
<td>N:115</td>
<td>N:10</td>
<td>N:10</td>
</tr>
<tr>
<td>Data in window not <50 c/mL</td>
<td>1(1)*</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DC for lack of efficacy</td>
<td>1(1)*</td>
<td>1(1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DC for other reason not <50 c/mL</td>
<td>3(3)*</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No virologic data in window</td>
<td>0 (3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W/D due to AE or death</td>
<td>1(1)</td>
<td>12 (10)*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W/D due to other reasons</td>
<td>5 (1)</td>
<td>5 (1)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Data presented for the randomized QSW IM arms are inclusive of MP and EP. Data presented for thesnapshot QSW IM arms are inclusive of randomization-exposed subjects only. Thus, the ratio of live person-time is not the same as the ratio of person-time in the randomized trial. For the snapshot arms, person-time was calculated from Day 1 to the last HIV-1 RNA measurement at a snapshot visit, or the termination date (at any time point during the trial). For the randomized arms, person-time was calculated from randomization to the last HIV-1 RNA measurement at a snapshot visit, or the termination date (at any time point during the trial).
LA CAB and LA RPV Phase III studies

- **ATLAS** – randomized, open-label, non-inferiority study in participants stably suppressed on 3-drug ART comparing CAB LA 400 mg + RPV LA 600 mg q 4 weeks with maintenance of current ART regimen (2 NRTIs plus an INI, NNRTI, or a PI). 618 participants were randomized (1:1) to continue current ART or switch to oral therapy with CAB 30 mg + RPV 25 mg daily for 4 Weeks followed by Q4 weekly CAB LA + RPV LA injections.

- **FLAIR** – randomized, open-label, non-inferiority study in ART-naïve adult participants comparing CAB LA 400 mg + RPV LA 600 mg q 4 weeks to remaining on ABC/DTG/3TC over 48 weeks. 631 participants started ABC/DTG/3TC for 20 weeks and those with HIV RNA <50 c/mL after 16 weeks were randomized at 20 weeks to continue ABC/DTG/3TC or switch to oral therapy with CAB 30 mg + RPV 25 mg daily for 4 weeks, followed by monthly CAB LA + RPV LA injections.

- Both studies met their primary endpoints at 48 week (ViiV Press Releases)

- **ATLAS-2M** study compares q 8 wk CAB LA + RPV LA to q 4 wk CAB LA + RPV LA over a 48-week treatment period in approximately 2020 adult HIV-1 infected subjects.

Recently approved or in Phase III

NEW THERAPY FOR RESISTANT VIRUS
HIV Entry Inhibitors

- gp41
- gp120
- V3 loop
- CD4
- Binding
- Coreceptor Binding
- Virus-Cell Fusion

Ibalizumab

- Humanized monoclonal Ab: binds CD4 on host cells; blocks HIV entry (post attachment inhibitor)\(^1\)
- Active against CCR5 and CXCR4 tropic HIV
- No cross resistance with other ARVs\(^2\)
- IV infusion: 2,000 mg loading dose then 800 mg every 2 wks
- Duration of infusion: 15–30 min

Ibalizumab in Persons with Multi-Drug Resistant HIV

- Phase 3 trial: 40 heavily treatment experienced pts with 3-class ARV resistance, ≥1 active drug
- Primary endpt: VL drop >0.5 \(\log_{10}\) C/mL
 - 3% during control period
 - 83% after loading dose
- Regimen optimized at day 14
 - Wk 24: VL <200 in 50%
 - Expanded access: viral suppression to wk 48

\(^1\)Emu B et al, Abstract 1686, IDWeek 2017; Weinheimer S et al, CROI 2018
\(^2\)Ibalizumab in Persons with Multi-Drug Resistant HIV

Approved March 6, 2018
Fostemsavir (FTR): Oral HIV Attachment Inhibitor

- Prodrug of tamsavir: binds to gp120, inhibits HIV attachment to CD4
- Phase 3 trial in heavily treatment experienced patients with VF (BRIGHTe)

Kozal M et al, 16th EACS, 2017

Fostemsavir (FTR): Phase 3 Trial (BRIGHTe)

Mean VL Change at day 8

Randomized Cohort (n = 272)

Nonrandomized Cohort (n = 99)

Virologic response through wk 24 (observed analysis)

BRIGHTE: Efficacy at Wk 48 (FDA Snapshot)

<table>
<thead>
<tr>
<th>Outcome at Wk 48 [%]</th>
<th>Randomized Cohort (n = 272)</th>
<th>Nonrandomized Cohort (n = 99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 RNA < 40 c/mL (virologic success)</td>
<td>146 (54)</td>
<td>38 (38)</td>
</tr>
<tr>
<td>HIV-1 RNA = 40-400 c/mL (virologic failure)</td>
<td>104 (38)</td>
<td>32 (33)</td>
</tr>
<tr>
<td>Data in window below below threshold</td>
<td>72 (26)</td>
<td>33 (33)</td>
</tr>
<tr>
<td>D/C for lack of efficacy</td>
<td>6 (2)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>D/C due to other reasons while below threshold</td>
<td>9 (3)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Change in OBT</td>
<td>17 (6)</td>
<td>14 (14)</td>
</tr>
<tr>
<td>No virologic data</td>
<td>22 (8)</td>
<td>9 (9)</td>
</tr>
<tr>
<td>D/C due to AE or death</td>
<td>15 (5)</td>
<td>8 (8)</td>
</tr>
<tr>
<td>D/C due to other reasons</td>
<td>5 (2)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Missing data during window but on study</td>
<td>2 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Median CD4+ cell count change vs BL, cells/mm³ (IQR)</td>
<td>127 (14 to 264)</td>
<td>35 (1 to 121)</td>
</tr>
</tbody>
</table>
NOVEL AGENTS IN EARLY DEVELOPMENT

MK-8591 is More Potent Against WT and M184I Viruses Than Approved NRTIs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Virus</th>
<th>IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK-8591</td>
<td>W/T</td>
<td>0.2 ± 0.3 (n=8)</td>
</tr>
<tr>
<td>TAF</td>
<td>W/T</td>
<td>1.6 ± 0.6 (n=4)</td>
</tr>
<tr>
<td>TDF</td>
<td>W/T</td>
<td>2.8 ± 0.9 (n=8)</td>
</tr>
<tr>
<td>AZT</td>
<td>W/T</td>
<td>2.0 ± 0.5 (n=8)</td>
</tr>
<tr>
<td>STC</td>
<td>W/T</td>
<td>12.3 ± 10.3 (n=4)</td>
</tr>
</tbody>
</table>

Long-acting NRTI: MK-8591 (EFdA)

- Nucleoside RT translocation inhibitor (NRTI)
- Half life of active anabolite: ≈ 80-130 hr
- Humans: single oral dose as low as 0.5 mg suppressed HIV RNA for >7 days

Change From Baseline HIV-1 RNA

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Phase 1b, single-dose, monotherapy study</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK-8591 0.5 mg</td>
<td>-3.0 ± 2.0</td>
</tr>
<tr>
<td>MK-8591 1 mg</td>
<td>-3.5 ± 2.5</td>
</tr>
<tr>
<td>MK-8591 30 mg</td>
<td>-3.0 ± 2.0</td>
</tr>
</tbody>
</table>

Grobler et al CROI 2017 #435
Matthews et al IAS 2017 #TUPDB0202LB

Study population: ART naïve (N=30)
Long-acting NRTI: MK-8591 (EFdA)

- Study in healthy volunteers: daily doses as low as 0.25 mg expected to lead to HIV suppression
- Phase 2b trial in people with HIV, in combination with doravirine (NNRTI) and 3TC, has started (DRIVE2Simplify)
 - Daily dosing
- Potential for once weekly or even once monthly dosing
 - "Partners wanted"

MK-8591 Parenteral Formulations Release Effective Drug Levels for >180 days

- Low dose amenable to extended-duration parenteral formulation
- >180-day extended release from solid state formulations after a single injection in rat
- Data suggest the potential to provide coverage for durations up to 1 year

GS-6207

HIV Capsid Acts at Multiple Stages in the Viral Life Cycle

Gilead’s capsid inhibitors inhibit HIV capsid function, resulting in aberrant core assembly/disassembly via multiple steps in HIV replication cycle
Potency

ATV, atazanavir. DTG, dolutegravir. EFV, efavirenz. paEC, protein-adjusted effective concentration. RPV, rilpivirine.

<table>
<thead>
<tr>
<th>Drug</th>
<th>EC50 (nM)</th>
<th>paEC95 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFV</td>
<td>0.79 ± 0.06</td>
<td>44 ± 3</td>
</tr>
<tr>
<td>RPV</td>
<td>0.007 ± 0.005</td>
<td>46 ± 2</td>
</tr>
<tr>
<td>DTG</td>
<td>1.28 ± 0.14</td>
<td>106 ± 16</td>
</tr>
<tr>
<td>ATV</td>
<td>7.23 ± 0.50</td>
<td>150 ± 11</td>
</tr>
</tbody>
</table>

GS-6207 is a potent inhibitor of all major HIV-1 subtypes

GS-6207 is more potent than currently marketed ARVs

GS-6207: Novel HIV Capsid Inhibitor with Long-Acting Potential

EC50 and Hill slope values (mean ± SD) obtained from at least 3 independent experiments performed in quadruplicate.

EC95 = EC50 x (95/51/hillslope)

<table>
<thead>
<tr>
<th>Drug</th>
<th>EC50 (nM)</th>
<th>EC95 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-6207 (0.10 ± 0.01)</td>
<td>4.0 ± 0.4</td>
<td></td>
</tr>
</tbody>
</table>

GS-6207 is a potent inhibitor of all major HIV-1 subtypes

GS-6207 is more potent than currently marketed ARVs

Plasma PK in Rats and Dogs Following a Single SC Dose

- Single subcutaneous injection maintains plasma concentrations well above paEC95 for >24 weeks in dogs
- PK supports long-acting administration, potentially Q3M or longer, in humans

paEC95, plasma binding-adjusted effective concentration required to inhibit replication by 95%

Plasma PK in Rats and Dogs Following a Single SC Dose

- **Rat 50 mg/kg (0.125 mL/kg)**
- **Dog 12 mg/kg (0.03 mL/kg)**

Broadly Neutralizing Antibodies against HIV

- Phase 2 studies in HIV infected patients
- Clear antiretroviral activity
- Combinations likely necessary
- Can be modified for longer half-life
- Every 3 to 6 month infusions possible

MFGE12

V1/V2

V3 loop antigen

CD4-binding site

MIPER

Phase 1

Phase 2

Phase 3

Phase 4

New drug development

National Harbor, Maryland, December 9-11, 2018
Combination bNAb, long-acting bNAb being studied for treatment, prevention.

Antiretroviral Therapy: The Future

Acknowledgements

• Judy Currier
• Dan Kuritzkes
• Raphael Landovitz
• Carey Hwang
• Michael Aboud
• Chloe Orkin
• Kathleen Squires
• Trip Gulick
• Raj Gandhi
• Jay Glober
Question-and-Answer
Investigational Approaches to Antiretroviral Therapy: New Strategies and Novel Agents
Joseph J. Eron, Jr, MD

SUGGESTED READINGS

