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The 2019 edition of the International 
Antiviral Society–USA (IAS–USA) drug 
resistance mutations list updates the 
Figure last published in January 2017.1 
In this update: 

•	 2 integrase strand transfer inhibitors 
(InSTIs), bictegravir and cabotegra- 
vir, and the nonnucleoside reverse 
transcriptase inhibitor (NNRTI), do- 
ravirine, were added to the Figure.

•	Bictegravir (formerly GS-9883) was  
approved by the US Food and Drug 
Administration (FDA) in February  
2018 as part of a fixed-dose combi-
nation of bictegravir/emtricitabine/
tenofovir alafenamide for the treat- 
ment of HIV-infected, treatment-
naive individuals or to replace an 
antiretroviral regimen in those who 
are virologically suppressed (HIV-1 
RNA below 50 copies/mL) on a 
stable antiretroviral regimen for at 
least 3 months with no history of  
treatment failure and no known 
substitutions associated with resis-
tance to the individual components 
of the fixed-dose combination.2

•	Cabotegravir (formerly S/GSK- 
1265744) is an investigational drug  
that has been filed for approval at  
the FDA as part of a fixed-dose, 
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The 2019 edition of the IAS–USA drug resistance mutations list updates the 
Figure last published in January 2017. The mutations listed are those that 
have been identified by specific criteria for evidence and drugs described. 
The Figure is designed to assist practitioners in identifying key mutations 
associated with resistance to antiretroviral drugs, and therefore, in making 
clinical decisions regarding antiretroviral therapy.
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long-acting combination of cabote-
gravir/rilpivirine for the treatment 
of HIV-infection in adults who are 
virologically suppressed and have 
no resistance to the individual com-
ponents of the combination.3 

•	Doravirine (formerly MK-1439) was 
approved by the FDA in August 
2018 for the treatment of HIV-in-
fected, treatment-naive individuals 
in combination with other antiret-
roviral drugs.4 

•	Several changes were made to 
drugs already on the Figure. On the 
lopinavir/ritonavir bar, mutations 
at positions 50, 54, and 84 were 
changed to boldface to indicate rec-
ognition as major mutations rather  
than minor mutations.5-7 The G118R 
mutation was added to the bar for 
the InSTI dolutegravir.8,9

•	For antiretroviral drugs that are no 
longer recommended, the bars are 
listed at the bottom of the class and 
are shaded in gray.

Methods

The IAS–USA Drug Resistance Muta- 
tions Group is an independent, vol- 
unteer panel of experts charged with 

delivering accurate, unbiased, and evi- 
dence-based information on drug re-
sistance–associated mutations for HIV 
clinical practitioners. The group re-
views new data on HIV drug resistance 
to maintain a current list of mutations 
associated with clinical resistance to 
HIV-1. This list includes mutations that 
may contribute to a reduced virologic 
response to a drug.

The group considers only data that 
have been published or have been pre-
sented at a scientific conference. Table 
1 provides the list of amino acids and 
the abbreviations used. Drugs that have 
been approved by the US Food and 
Drug Administration and are generally 
recommended, as well as any drugs 

Table 1. Amino acids and 
their abbreviations.

Alanine A
Cysteine C 
Aspartate D
Glutamate E
Phenylalanine F
Glycine G
Histidine H
Isoleucine I
Lysine K
Leucine L 
Methionine M 
Asparagine N
Proline P
Glutamine Q
Arginine R
Serine S
Threonine T
Valine V
Tryptophan W
Tryosine Y
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available in expanded access programs 
are included (listed in alphabetic order 
by drug class). Drugs that are no longer 
recommended are listed at the bottom 
of the class and are shaded in gray. 
User notes provide additional infor-
mation. Although the Drug Resistance 
Mutations Group works to maintain a 
complete and current list of these mu-
tations, it cannot be assumed that the 
list presented here is exhaustive.

The magnitude of the reduction in 
susceptibility conferred by drug resis-
tance mutations varies widely, and is 
modulated by the genetic context of  
the HIV sequence in which the muta- 
tion occurs. Despite the fact that mu-
tations result in a spectrum of degrees 
of resistance, mutations have been ar-
bitrarily designated as major (bolded) 
or minor (not bolded) (see Figure 1). 
Those defined as major tend to occur 
earlier during treatment failure and 
generally confer larger reductions in 
susceptibility. Those defined as minor 
tend to accrue after the emergence of 
a major mutation, confer some incre-
mental resistance, may occur as well as 
polymorphisms in wild-type virus, and 
in some cases do not reduce suscep-
tibility but restore replication fitness 
to viruses with resistance mutations 
that impair fitness. In general, a major 
mutation should raise concern that a 
drug is at least partially compromised; 
a minor mutation on its own may not 
raise such a concern, but it should 
add concern in the presence of other 
mutations. 

Identification of Mutations

The mutations listed are those that have 
been identified by 1 or more of the fol- 
lowing criteria: (1) in vitro passage ex- 
periments or validation of contribution  
to resistance by using site-directed mu- 

tagenesis; (2) susceptibility testing of  
laboratory or clinical isolates; (3) nu-
cleotide sequencing of viruses from 
patients in whom the drug is failing; (4) 
association studies between genotype 
at baseline and virologic response in 
patients exposed to the drug. 

The development of more recently 
approved drugs that cannot be tested  
as monotherapy precludes assessment 
of the impact of resistance on anti-
retroviral activity that is not seriously 
confounded by activity of other drug 
components in the background regi- 
men. Readers are encouraged to con- 
sult the literature and experts in the 
field for clarification or more informa-
tion about specific mutations and their 
clinical impact. Polymorphisms as- 
sociated with impaired treatment re- 
sponses that occur in otherwise wild- 
type viruses should not be used in epi- 
demiologic analyses to identify trans- 
mitted HIV-1 drug resistance. Conse-
quently, only some of the resistance 
mutations depicted on the Figure can 
be used to identify transmitted drug 
resistance.10 

Clinical Context

The Figure is designed for practitioners 
to use in identifying key mutations 
associated with antiretroviral drug re-
sistance and in making therapeutic 
decisions. In the context of making 
clinical decisions regarding antiretro-
viral therapy, evaluating the results of 
HIV-1 genotypic testing includes: (1)  
assessing whether the pattern or ab-
sence of a pattern in the mutations is 
consistent with the patient’s history 
of antiretroviral therapy; (2) recogniz-
ing that in the absence of current drug 
treatment that is conferring selection 
pressure, resistant strains may be pres- 
ent at levels below the limit of detec- 
tion of the test (analyzing stored sam-
ples, collected under selection pressure, 
could be useful in this setting); and (3)  
recognizing that virologic failure of 
a first-line regimen typically involves 
HIV-1 isolates with resistance to only 1 
or 2 of the drugs in the regimen. In this 
setting, resistance emerges most com-
monly to lamivudine or emtricitabine, 
nonnucleoside analogue reverse tran- 

scriptase inhibitors, or first generation 
InSTIs (elvitegravir, raltegravir).

The absence of detectable viral re-
sistance after treatment failure may 
result from any combination of the fol- 
lowing factors: the presence of drug-
resistant minority viral populations, a 
prolonged interval between the time of 
antiretroviral drug discontinuation and 
genotypic testing, nonadherence to 
medications, laboratory error, lack of 
current knowledge of the association 
of certain mutations with drug resis- 
tance, the occurrence of relevant mu-
tations outside the regions targeted by 
routine resistance assays, drug-drug 
interactions leading to subtherapeutic 
drug levels, and possibly compartmen-
tal issues, indicating that drugs may 
not reach optimal levels in specific cel-
lular or tissue reservoirs.

For more in-depth reading and an 
extensive reference list, see the 2018 
IAS–USA panel recommendations for 
resistance testing11 and 2018 IAS–USA 
panel recommendations for antiret-
roviral therapy.12 Updates are posted 
periodically at www.iasusa.org.

Comments

Please send your evidence-based com-
ments, including relevant reference 
citations, to journal@iasusa.org.

Reprint Requests

The Drug Resistance Mutations Group 
welcomes interest in the Figure as an  
educational resource for practitioners 
and encourages dissemination of the 
material to as broad an audience as 
possible. However, permission is re-
quired to reprint the Figure and no 
alterations in format or content can  
be made.

Requests to reprint the material  
should include the name of the pub- 
lisher or sponsor, the name or a de- 
scription of the publication in which 
the material will be reprinted, the fund- 
ing organization(s), if applicable, and 
the intended audience. Requests to  
make any minimal adaptations of the  
material should include the former, 
plus a detailed explanation of the adap- 
tation(s) and, if possible, a copy of the 

K ▼
65
R

Amino acid wild-type

MUTATIONS

Amino acid position

Insertion

Amino acid substitution
conferring resistance

Figure 1. Display of the Figure Bar: Amino 
acid position, wild type, mutation confer-
ring resistance, and indication of insertion 
mutation.
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proposed adaptation. To ensure the in-
tegrity of the Figure, IAS–USA policy is  
to grant permission for only minor, pre- 
approved adaptations of the Figure (eg, 
an adjustment in size). Minimal adap- 
tations only will be considered; no al-
terations of the content of the Figure or 
user notes will be permitted.

Permission will be granted only for 
requests to reprint or adapt the most 
current version of the Figure as they 
are posted at www.iasusa.org. Because 
scientific under-standing of HIV drug 
resistance evolves and the goal of the 
Drug Resistance Mutations Group is to 
maintain the most up-to-date compila-
tion of mutations for HIV clinicians and 
researchers, publication of out-of-date 
figures is counterproductive. If you 
have any questions about reprints or 
adaptations, please contact IAS–USA.�
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MUTATIONS IN THE REVERSE TRANSCRIPTASE GENE ASSOCIATED WITH RESISTANCE TO REVERSE TRANSCRIPTASE INHIBITORS
Nucleoside and Nucleotide Analogue Reverse Transcriptase Inhibitors (nRTIs)1

69 Insertion Complex2 (affects all nRTIs currently approved by the US FDA)
M A ▼ K L T K

Multi-nRTI 
Resistance

41 62 69 70 210 215 219
L V  Insert R W Y Q

F E

151 Complex3 (affects all nRTIs currently approved by the US FDA except tenofovir)
A V F F Q

Multi-nRTI 
Resistance

62 75 77 116 151
V I L Y M

Thymidine Analogue-Associated Mutations4,5 (TAMs; affect all nRTIs currently approved by the US FDA other than emtricitabine and lamivudine)
M D K L T K

Multi-nRTI 
Resistance

41 67 70 210 215 219
L N R W Y Q

F E

K L Y M
Abacavir1,6 65 74 115 184

R V F V
E
N

K M
Emtricitabine 65 184

R V
E I
N

K M
Lamivudine 65 184

R V
E I
N

K K
Tenofovir1,7 65 70

R E
E
N

M D K L T K
Zidovudine4,5,8,9 41 67 70 210 215 219

L N R W Y Q
F E

K L
Didanosine1,10,21 65 74

R V
E
N

M K D K L T K
Stavudine1,4,5,8,9 41 65 67 70 210 215 219

L R N R W Y Q
E F E
N

Nonnucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs)1,11

V Y G P F M L
Doravirine12 106 188 190 225 227 230 234

A C E H C L I
I L L

M H R
T

L K K V V Y Y G P M
Efavirenz 100 101 103 106 108 181 188 190 225 230

I P N M I C L S H L
S I A

V A L K V E V Y G M
Etravirine13 90 98 100 101 106 138 179 181 190 230

I G  I E I A D  C S L
H G F  I A
P K T  V

Q

L K K V V Y Y G M
Nevirapine 100 101 103 106 108 181 188 190 230

I P N A I C C A L
S M I L

H

L K E V Y Y H F M
Rilpivirine14 100 101 138 179 181 188 221 227 230

I E A L C L Y C I
P G I L

K V
Q
R
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MUTATIONS IN THE INTEGRASE GENE ASSOCIATED WITH RESISTANCE TO INTEGRASE STRAND TRANSFER INHIBITORS25

G E G Q R
Bictegravir26 118 138 140 148 263

R K S H K

T G E G Q S N R
Cabotegravir27 66 118 138 140 148 153 155 263

K R A A H F H K
K C K Y
T R R

S

G F E G Q N R
Dolutegravir28 118 121 138 140 148 155 263

R Y A A H H K
K S K
T R

T E T F   S Q N R
Elvitegravir29 66 92 97 121 147148 155 263

I Q A Y  G H H K
A G K
K R

L E T F E G Y Q N R
Raltegravir30 74 92 97 121 138 140 143 148 155 263

M Q A Y A A R H H K
K S H K

C R

MUTATIONS IN THE ENVELOPE GENE ASSOCIATED WITH RESISTANCE TO ENTRY INHIBITORS
G I V Q Q N N

Enfuvirtide23 36 37 38 39 40 42 43
D V A R H T D
S M

E

Maraviroc24       See User Note

MUTATIONS IN THE PROTEASE GENE ASSOCIATED WITH RESISTANCE TO PROTEASE INHIBITORS(PIs)15,16,17

L G K L V L E M M G I F I D I I A G V I I N L I
Atazanavir  

+/- ritonavir18
10 16 20 24 32 33 34 36 46 48 50 53 54 60 62 64 71 73 82 84 85 88 90 93
I E R I I I Q I I V L L L E V L V C A V V S M L
F M F L L Y V M I S T M
V I V V M V T T F
C T T L A I

V A

V V L I I I T L I L
Darunavir/ 
ritonavir19

11 32 33 47 50 54 74 76 84 89
I I F V V M P V V V

L

L K L V L M I I F I L A G L V I L
Lopinavir/ 
ritonavir20

10 20 24 32 33 46 47 50 53 54 63 71 73 76 82 84 90
F M I I F I V V L V P V S V A V M
I R L A L T F
R A T
V M S

T
S

L L M K M I I Q H T V N I L
Tipranavir/ 

ritonavir
10 33 36 43 46 47 54 58 69 74 82 83 84 89
V F I T L V A E K P L D V I

L M R T M
V V V

L V M I I I G L V I L
Fosamprenavir/ 

ritonavir21
10 32 46 47 50 54 73 76 82 84 90
F I I V V L S V A V M
I L V F
R M S
V T

L K L V M M I A G L V V I L
Indinavir/ 

ritonavir21
10 20 24 32 36 46 54 71 73 76 77 82 84 90
I M I I I I V V S V I A V M
R R L T A F
V T

L D M M A V V I N L
Nelfinavir 21,22 10 30 36 46 71 77 82 84 88 90

F N I I V I A V D M
I L T F S

T
S

L L G I I A G V V I L
Saquinavir/ 
ritonavir 21

10 24 48 54 62 71 73 77 82 84 90
I I V V V V S I A V M
R L T F
V T

S
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User Notes
1. Mutations at the C-terminal reverse tran- 
scriptase domains (amino acids 293-560) out- 
side of regions depicted on the Figure Bar  
may contribute to nucleoside (or nucleotide) 
analogue reverse transcriptase inhibitor (nRTI) 
and nonnucleoside analogue reverse transcrip-
tase inhibitors (NNRTI) HIV-1 drug resistance. 
The clinical relevance of these connection do-
main mutations arises mostly in conjunction 
with thymidine analogue–associated muta-
tions (TAMs) and M184V and they have not 
been associated with increased rates of viro-
logic failure of etravirine or rilpivirine in clinical 
trials.1-3 K65E/N/R variants are reported in 
patients experiencing treatment failure with 
tenofovir (meaning tenofovir disoproxil fu-
marate [TDF] or tenofovir alafenamide [TAF]) 
stavudine, or didanosine. The K65R/N vari-
ants may be selected by tenofovir, didanosine, 
abacavir, or stavudine and are associated with 
decreased viral susceptibility to these drugs.4-8 
65R may be more easily selected in subtype C 
clades.9 K65E usually occurs in mixtures with 
wild-type virus. Patient-derived viruses with 
K65E and site-directed mutations replicate 
very poorly in vitro; as such, no susceptibil-
ity testing can be performed.10,11 Some nRTI  
mutations, like T215Y and H208Y,12 may lead  
to viral hypersusceptibility to nonnucleoside  
reverse transcriptase inhibitors (NNRTIs), includ- 
ing etravirine,13 in nRTI-treated individuals. 
The presence of these mutations may improve 
subsequent virologic response to NNRTI-con-
taining regimens (nevirapine or efavirenz) in 
NNRTI-naive individuals,14-18 although no clin- 
ical data exist for improved response to etra-
virine in NNRTI-experienced individuals.

2. The 69 insertion complex consists of a sub-
stitution at codon 69 (typically T69S) and an 
insertion of 2 or more amino acids (S-S, S-A, 
S-G, or others). The 69 insertion complex is  
associated with resistance to all nRTIs cur-
rently approved by the US Food and Drug 
Administration (FDA) when present with 1 or 
more TAMs at codons 41, 210, or 215.4 Some 
other amino acid changes from the wild-type 
T at codon 69 without the insertion may be 
associated with broad nRTI resistance.

3. Tenofovir retains activity against the Q151M 
complex of mutations.4 Q151M is the most 
important mutation in the complex (ie, the 
other mutations in the complex [A62V, V75I, 
F77L, and F116Y] in isolation may not reflect 
multidrug resistance). Since no differences 
in resistance patterns have been observed 
between TDF and TAF, both drugs are re- 
ferred to as “tenofovir” on the Figure Bar.19

4. Mutations known to be selected by TAMs 
(ie, M41L, D67N, K70R, L210W, T215Y/F, and 
K219Q/E) also confer reduced susceptibil-
ity to all currently approved nRTIs20 except 
emtricitabine and lamivudine, which in fact 
reverse the magnitude of resistance and are 

recommended with tenofovir or zidovudine 
in the presence of TAMs. The degree to which 
cross-resistance is observed depends on the 
specific mutations and number of mutations 
involved.21-24 

5. Although reverse transcriptase changes as-
sociated with the E44D and V118I mutations 
may have an accessory role in increased resis-
tance to nRTIs in the presence of TAMs, their 
clinical relevance is very limited.25-27 

6. The M184V mutation alone does not ap-
pear to be associated with a reduced virologic 
response to abacavir in vivo. When associ-
ated with TAMs, M184V increases abacavir 
resistance.5,28 

7. The presence of K65R is associated with 
a reduced virologic response to tenofovir.4 
A reduced response also occurs in the pres-
ence of 3 or more TAMs inclusive of either 
M41L or L210W.4 The presence of TAMs or  
combined treatment with zidovudine prevents  
the emergence of K65R in the presence of 
tenofovir.29-31 

8. The presence of M184V appears to delay or 
prevent emergence of TAMs.32 This effect may 
be overcome by an accumulation of TAMs or 
other mutations.

9. The T215A/C/D/E/G/H/I/L/N/S/V substitutions  
are revertant mutations at codon 215 that 
confer increased risk of virologic failure of zid-
ovudine or stavudine in antiretroviral-naive 
patients.33,34 The T215Y mutant may emerge 
quickly from one of these mutations in the 
presence of zidovudine or stavudine.35 

10. The presence of 3 of the following muta- 
tions—M41L, D67N, L210W, T215Y/F, K219Q/E— 
is associated with resistance to didanosine.36 
The presence of K70R or M184V alone does 
not decrease virologic response to didano-
sine.37 However, the mutations depicted on 
the Figure Bar cannot be considered compre-
hensive because little relevant research has 
been reported in recent years to update the 
resistance and cross-resistance patterns for 
this drug.

11. There is no evidence for the utility of efavi-
renz, nevirapine, or rilpivirine in patients with 
NNRTI resistance.38 

12. Doravirine is active in vitro against var- 
iants containing the common NNRTI muta-
tions K103N, E138K, Y181C, and G190A.39,40 

Doravirine selects for mutations at positions 
106, 108, 227, and 234, with more than 
1 mutation usually required for substan-
tial levels of resistance.41 Mutations V106A, 
Y188L, and M230L are associated with a 10-  
or greater fold reduced susceptibility to dora- 
virine. V106A and Y188L have also been se- 
lected in vivo.42,43 In 1 clinical isolate, G190E 
was associated with about 20-fold reduced 
susceptibility to doravirine.40 Furthermore, 

the double and triple mutants V106A and 
F227L; V106A and L234I; V106A and F227L 
and L234I; and V106A and 190A and F227L, 
are all associated with substantial resis-
tance to doravirine.39,41,44 

13. Resistance to etravirine has been ex- 
tensively studied only in the context of co- 
administration with ritonavir-boosted daruna-
vir. There, mutations associated with virologic 
outcome were assessed and their relative 
weights (or magnitudes of impact) assigned. 
In addition, phenotypic cutoff values were 
calculated, and assessments of genotype-
phenotype correlations from a large clinical 
database have determined relative importance 
of the various mutations. These 2 approaches 
are in agreement for many, but not all, muta-
tions and weights.45-47 The single mutations 
L100I, K101P, and Y181C/I/V have high relative 
weights with regard to reduced susceptibility 
and reduced clinical response compared with 
other mutations.48,49 The presence of K103N 
alone does not affect etravirine response.49 
Accumulation of several mutations results in 
greater reductions in susceptibility and viro-
logic response than do single mutations.50-52 

14. Fifteen mutations have been associated 
with decreased rilpivirine susceptibility 
(K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, 
H221Y, F227C, and M230I/L).53-55 A 16th mu-
tation, Y188L, reduces rilpivirine susceptibility 
6 fold. The K101P and Y181I/V mutations re-
duce rilpivirine susceptibility approximately 
50 fold and 15 fold, respectively, but are 
not commonly observed in patients receiv-
ing rilpivirine.56-58 Mutations at position 138 
(most notably E138A) may occur as natural 
polymorphisms, especially in non-B subtype 
virus.59 The K101E, E138K, and Y181C mu-
tations, each of which reduces rilpivirine 
susceptibility 2.5 fold to 3 fold, occur com-
monly in patients receiving rilpivirine. E138K 
and to a lesser extent K101E usually occur in 
combination with the nRTI resistance–associ-
ated mutation M184I, which alone does not 
reduce rilpivirine susceptibility. When M184I 
is combined with E138K or K101E, rilpivirine 
susceptibility is reduced about 7 fold and 4.5 
fold, respectively.58,60-62 The combinations of 
reverse transcriptase–associated mutations 
L100I plus K103N/S and L100I plus K103R 
plus V179D were strongly associated with re-
duced susceptibility to rilpivirine. However, for 
isolates harboring the K103N/R/S or V179D as  
single mutations, no reduction in susceptibil-
ity was detected.55,63 

15. Often, several mutations are necessary to  
substantially impact virologic response to a 
ritonavir-boosted protease inhibitor (PI).64

16. Mutations in Gag cleavage sites may con-
fer or contribute to resistance to PIs and may 
even emerge before mutations in protease.65 
A large proportion of virus samples from 



IAS–USA        Topics in Antiviral Medicine

vii

patients with confirmed virologic failure on 
a PI-containing regimen is not found to have 
PI resistance–associated mutations. 

17. Ritonavir is not listed separately, as it is 
currently used only at low doses as a pharma-
cologic booster of other PIs.

18. Several mutations are associated with 
atazanavir resistance. Their impacts differ, 
with I50L, I84V, and N88S having the great-
est effect. Mutations that are selected during 
unboosted atazanavir are not different from 
those selected during boosted atazanavir, but 
the relative frequency of mutations may differ. 
Higher atazanavir levels obtained with ritona- 
vir boosting increase the number of muta- 
tions required for loss of activity. The presence 
of M46I plus L76V might increase suscepti-
bility to atazanavir when no other related mu- 
tations are present.66

19. Virologic response to ritonavir-boosted 
darunavir correlates with baseline suscepti-
bility and the presence of several specific PI 
resistance–associated mutations. Reductions 
in response are associated with increas-
ing numbers of the mutations indicated 
on the Figure Bar. The negative impact of  
the protease mutations I47V, I54M, T74P, and 
I84V and the positive impact of the prote-
ase mutation V82A on virologic response to 
ritonavir-boosted darunavir were shown inde-
pendently in 2 data sets.67,68 Some of these 
mutations appear to have a greater effect on 
susceptibility than others (eg, I50V vs V11I). 
The presence at baseline of 2 or more of the 
substitutions V11I, V32I, L33F, I47V, I50V, 
I54L/M, T74P, L76V, I84V, or L89V was asso-
ciated with a decreased virologic response to 
ritonavir-boosted darunavir.69 

20. Virologic response to ritonavir-boosted 
lopinavir is affected by the presence of 3 or 
more of the following amino acid substitu-
tions in protease at baseline: L10F/I/R/V, 
K20M/N/R, L24I, L33F, M36I, I47V, G48V, 
I54L/T/V, V82A/C/F/S/T, and I84V. In addition, 
the combination of 47A/V with V32I is associ-
ated with high-level resistance.66,70-76 I50V is 
only occasionally selected in vivo but has 
a clear impact on susceptibility.77-79 Subtype 
C patterns with M46L, I54V, L76V, and V82A 
are frequently observed in patients receiving 
ritonavir-boosted lopinavir. 

21. The mutations depicted on the Figure Bar  
cannot be considered comprehensive because 
little relevant research has been reported in re- 
cent years to update the resistance and cross-
resistance patterns for this drug.

22. In some nonsubtype-B HIV-1, D30N is 
selected less frequently than are other PI re-
sistance–associated mutations.80 

23. Resistance to enfuvirtide is associated 
primarily with mutations in the first heptad 

repeat (HR1) region of the gp41 envelope 
gene. However, mutations or polymorphisms  
in other regions of the env (eg, the HR2 region 
or those yet to be identified), as well as co- 
receptor usage and density, may affect suscep-
tibility to enfuvirtide.81-83 

24. The activity of CC chemokine receptor 5 
(CCR5) antagonists is limited to patients with 
virus that use only CCR5 for entry (R5 virus). 
Viruses that use both CCR5 and CXC chemo-
kine receptor 4 (CXCR4; termed dual/mixed 
[D/M] virus) or only CXCR4 (X4 virus) do not 
respond to treatment with CCR5 antagonists. 
Virologic failure of these drugs is frequently 
associated with outgrowth of D/M or X4 vi-
rus from a preexisting minority population 
present at levels below the limit of assay de-
tection. Mutations in HIV-1 gp120 that allow 
the virus to bind to the drug-bound form of 
CCR5 have been described in viruses from 
some patients whose virus remained R5 after 
virologic failure of a CCR5 antagonist. Most of 
these mutations are found in the V3 loop, the 
major determinant of viral tropism.84 There 
is as yet no consensus on specific signature 
mutations for CCR5 antagonist resistance, so 
they are not depicted on the Figure Bar. Some 
CCR5 antagonist–resistant viruses selected in 
vitro have shown mutations in gp41 without 
mutations in V3;85 the clinical significance of 
such mutations is not yet known.

25. In site-directed mutants and clinical iso-
lates, the mutation F121Y has a profound effect 
on susceptibility to elvitegravir and raltegravir 
and to a lesser extent to dolutegravir. R263K 
can be selected in vivo during treatment 
with dolutegravir and raltegravir and results 
in a 2- to 5-fold reduction in susceptibility to  
dolutegravir, elvitegravir, and raltegravir.86-91 
263K has been selected in vitro under pres-
sure with bictegravir and cabotegravir.92 

26. Bictegravir is a second-generation inte-
grase strand transfer inhibitor (InSTI), like 
dolutegravir, with higher genetic barrier to 
resistance than raltegravir and elvitegravir. 
Bictegravir has only been studied in detail in 
treatment-naive individuals and those with 
suppressed viremia (<50 HIV-RNA copies/mL)  
who have been on stable antiretroviral ther-
apy for at least 3 months without a history of 
treatment failure and without relevant resis-
tance to bictegravir or its coformulated drugs.  
Susceptibility studies in vitro and in animal  
models93 show that mutations G118R and  
R263K confer 14-fold and 6-fold increases in 
50% effective concentration (EC50), whereas 
the G140S and Q148H combination of muta- 
tions decreases HIV-1 susceptibility to bicte- 
gravir 4.8 fold. Bictegravir dose-escalation tis- 
sue culture experiments also showed the se-
lection of the M50I and R263K mutations.  
In combination with Q148 and G140A mu- 
tations, E138K reduces bictegravir suscepti-
bility 10 fold.94 Bictegravir is coformulated 

with TAF/emtricitabine, which may protect 
the drug from mutations such as those ob-
served during virologic failure of dolutegravir 
monotherapy.93-97 

27. Cabotegravir is an investigational, long-
acting InSTI. In clinical trials, Q148R (fold 
changes, 5.2-9.4) and G140R (fold change, 
6.7) have been observed particularly in HIV-1 
A1 subtype harboring the L74I integrase 
polymorphism.93,98-101 The G118R mutation 
has been selected in macaques receiving 
cabotegravir (long-acting) for pre-exposure 
prophylaxis during acute simian/human im-
munodeficiency virus infection.102

28. Several mutations are required in HIV 
integrase to confer high-level resistance to 
dolutegravir.103 Cross-resistance studies with 
raltegravir- and elvitegravir-resistant viruses 
indicate that Q148H/R and G140S in combi-
nation with mutations L74I/M, E92Q, T97A, 
E138A/K, G140A, or N155H are associated 
with 5-fold to 20-fold reduced dolutegravir 
susceptibility104 and reduced virologic sup-
pression in patients.105-108 

29. Seven elvitegravir codon mutations have 
been observed in InSTI treatment–naive and 
–experienced patients in whom therapy is 
failing.109-115 T97A, which may occur as a poly-
morphism,116 results in only a 2-fold change 
in elvitegravir susceptibility and may require 
additional mutations for resistance.114,115 The 
sequential use of elvitegravir and raltegravir 
(in either order) is not recommended because 
of cross-resistance between these drugs.114 

30. Raltegravir failure is associated with inte-
grase mutations in at least 3 distinct, but not 
exclusive, genetic pathways defined by 2 or 
more mutations including (1) a mutation at 
Q148H/K/R, N155H, or Y143R/H/C; and (2) 
1 or more additional minor mutations. Minor 
mutations described in the Q148H/K/R path-
way include L74M plus E138A, E138K, or 
G140S. The most common mutational pattern 
in this pathway is Q148H plus G140S, which 
also confers the greatest loss of drug suscep-
tibility. Mutations described in the N155H 
pathway include this major mutation plus 
either L74M, E92Q, T97A, E92Q plus T97A, 
Y143H, G163K/R, V151I, or D232N.117 The 
Y143R/H/C mutation is uncommon.118-122 

E92Q alone reduces susceptibility to elvite-
gravir more than 20 fold and causes limited 
(<5 fold) cross-resistance to raltegravir.123-125 
N155H mutants tend to predominate early in 
the course of raltegravir failure, but are gradu-
ally replaced by viruses with higher resistance, 
often bearing mutations G140S plus Q148H/
R/K, with continuing raltegravir treatment.
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