Advances Toward a Cure for HIV: Getting Beyond $N = X^2$

Jonathan Li, MD, MMSc, FIDSA

Assistant Professor of Medicine Brigham and Women's Hospital Harvard Medical School Boston, Massachusetts

Learning Objectives

After attending this presentation, learners will be able to:

- Define the mechanisms behind HIV persistence
- Describe challenges in achieving HIV eradication and remission
- List ongoing efforts and strategies for inducing HIV remission

Slide 3 of 53

Overview

- · Status of the HIV epidemic
- · Mechanisms behind HIV persistence
- · Success stories
 - The Berlin and London patients
 - · Post-treatment controllers
- Strategies for inducing HIV remission

Slide 4 of 53

Overview

- Status of the HIV epidemic
- Mechanisms behind HIV persistence
- Success stories
 - The Berlin and London patients
 - Post-treatment controllers
- Strategies for inducing HIV remission

Slide 11 of 53

Overview

- Status of the HIV epidemic
- Mechanisms behind HIV persistence
- Success stories
 - The Berlin and London patients
 - Post-treatment controllers
- Strategies for inducing HIV remission

Slide 17 of 53

Is HIV Cure Possible?

Slide 18 of 53

Differences between Berlin and London patients

Berlin patient	London patient
Heterozygous for Δ32	Homozygous for wild type CCR5
Acute myelogenous leukemia	Hodgkin lymphoma
Two HSCT	Single HSCT
Total body irradiation	No irradiation
Full intensity conditioning	Reduced intensity conditioning
T cell depletion with ATG	T cell depletion with aCD52

.

Fun Poll #1

In the average patient, how quickly does HIV return to detectable levels in the blood after ART is discontinued?

- 1. <48 hours
- 2. 2-4 days
- 3. 2-4 weeks
- 4. 2-4 months
- 5. >4 months

Slide 27 of 53

HIV Rebound after Treatment Interruption (TI)

- Assess the timing of HIV rebound in a pooled analysis of 6 AIDS Clinical Trials Group (ACTG) TI studies
- Inclusion criteria
 - On combination ART
 - HIV-1 RNA <50 copies/mL at time of ATI
 - No immunologic intervention (e.g., therapeutic vaccination)
- · Viral rebound threshold definitions
 - $^\circ\,$ Confirmed HIV-1 RNA ≥200 copies/mL or a single HIV-1 RNA ≥1,000 copies/mL

Slide 28 of 53

Overview

- Status of the HIV epidemic
- Mechanisms behind HIV persistence
- Success stories
 - The Berlin and London patients
 - Post-treatment controllers
- Strategies for inducing HIV remission

Slide 33 of 53

How Do We Transform Our Patients into PTCs?

- Bone marrow transplant (with CCR5 wild-type donors)
- Early HIV treatment
- Shock and kill
- · Gene therapy

Slide 34 of 53

Fun Poll #2

Stem-cell transplant with donor cells containing wild-type CCR5 had what effect after ART interruption?

- 1. Led to a sterilizing HIV cure
- 2. Significant delay in HIV rebound, but eventual HIV rebound
- 3. Rapid HIV rebound

Slide 36 of 53

How Do We Transform Our Patients into PTCs?

- Bone marrow transplant (with CCR5 wild-type donors)
- Early HIV treatment
- Shock and kill
- Gene therapy

Slide 38 of 53

_				
_				
_				

How Do We Transform Our Patients into PTCs?

- Bone marrow transplant (with CCR5 wild-type donors)
- Early HIV treatment
- Shock and kill
- Gene therapy

Slide 43 of 53

191

SECRETS OF PRESMICY

Corrected: Publisher Correction

Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys

- Latency reversing agent = TLR7 agonist (GS-9620)
- Reservoir clearing agent = broadly-neutralizing Ab (PGT-121)
- 44 rhesus monkeys randomized to 4 groups:
 - sham (placebo), GS-9620 alone, PGT-121 alone, or both

ART interruption 16 weeks after end of intervention

Slide 45 of 53 Borducchi, Nature 2018

How Do We Transform Our Patients into PTCs?

- Bone marrow transplant (with CCR5 wild-type donors)
- Early HIV treatment
- Shock and kill
- · Gene therapy

Slide 47 of 53

Slide 48 of 53

Zinc-Finger Nucleases (ZFN)

- Zinc-finger nucleases induce breaks in the gene of interest (e.g., CCR5)
- DNA repair is error-prone and frequently result in disruption and inactivation of the gene

The Washington Post

Chinese scientist's claim of gene-edited babies creates uproar

Slide 50 of 53

Section 2

"I know in my heart and soul that I will not be the only one cured of AIDS. Hope is alive in me."

Slide 52 of 53

