New Drugs in Development Are We Ready for Long-Acting ART?


Melanie A. Thompson, MD AIDS Research Consortium of Atlanta Follow me on Twitter @drmt

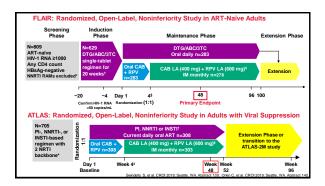
Learning Objectives

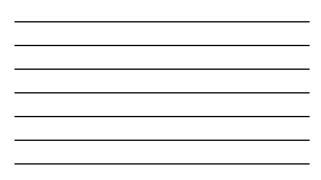
After attending this presentation, learners will be able to:

- Discuss the efficacy and challenges of long acting therapy with CAB LA + RPV LA
- Describe the mechanisms of action and pharmacokinetic profiles for MK-8591, GS 6207 and PRO 140
- Describe the efficacy and safety of fostemsavir in treatment experienced patients

Compound	Class	Sponsor	Ph I	Ph II	Ph III	Comments
CAB LA + RPV LA	INSTI/NNRTI	ViiV			х	IM monthly
Fostemsavir	Attachment Inhibitor	ViiV			x	Treatment-experienced pts Twice daily
MK 8591 (EFdA)	NRT Translocation Inhibitor	Merck		x		Long acting potential; treatment & prevention
PRO 140 (leronlimab)	Anti-CCR5 mAb	CytoDyn		llb	/111	SC once weekly
Albuvirtide	Fusion inhibitor	Frontier		х		Approved in China; no US data available yet
3BNC117	bNAb	Rockefeller; Frontier		x		Ph II w/ albuvirtide; no data available
GS-9131	NRTI	Gilead		х		Active against NRTI resistant viruses
GSK-2838232	Maturation Inhibitor	GSK		lla		Requires boosting; resistance concerns
GS-6207	Capsid Inhibitor	Gilead	х			Long acting potential
PGT121	bNAb	IAVI*	х			*GS 9722 licensed to Gilead
TAF Implant	NRTI	Gilead, others				

Long Acting Cabotegravir and Rilpivirine

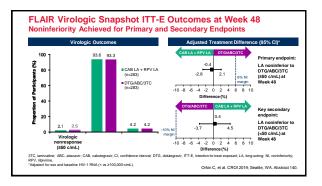

FLAIR and ATLAS

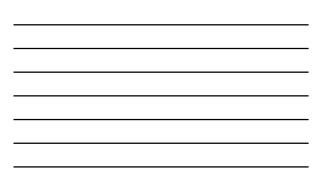

CAB LA + RPV LA: Summary

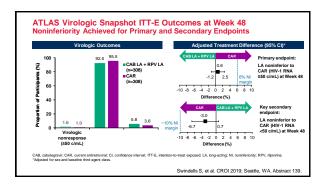
- Monthly CAB LA + RPV LA noninferior to
- DTG/ABC/3TC as initial therapy

•

- Combo ARV for maintenance of viral suppression
- Rare grade 3/4 or serious AEs
- Low rates of virologic failure, but some with treatment emergent mutations for both NNRTI and INSTI
- Injection site reactions common, grade 1-2
- · Patient-reported satisfaction high in both studies
- Limited expanded access for those unable to take pills: GSKClinicalSupportHD@gsk.com; 877-379-3718




FLAIR & ATLAS Baseline Characteristics	FLAIR Total N=566	ATLAS Total N=616		
Median age (range) – year	34 (18-68)	42 (18-82)		
Age ≥50 years – n (%)	62 (11)	162 (26)		
Female – n (%)	127 (22)	203 (33)		
Race - n (%)				
White	417 (74)	421 (68)		
Black or African American	103 (18)	139 (23)		
Other or missing	46 (8)	56 (9)		
HIV-1 RNA, copies/mL – n (%)				
<100,000	454 (80)			
≥100,000	112 (20)			
Median baseline CD4+ cell count (IQR) cells/mm ³	444 (320, 604)	653 (150-2543)		
HIV-1-HCV co-infection - n (%)	28 (5)			
Median duration of prior ART (range) - year		4 (1–21)		
Baseline third ART agent class - n (%)*				
NNRTI		310 (50)		
INSTI		201 (33)		
PI		105 (17)		
Swindells S. et al. CROI 2019: Seattle, WA, Abstract 139: Orkin C, et al. CROI 2019: Seattle, WA, Abstract 140.				


FLAIR & ATLAS Adverse Events	FLAIR CAB+RPV (LA) N=283	FLAIR DTG/ABC/3TC N=283	ATLAS CAB+RPV (LA) N=308	ATLAS Combo ART N=308
Any AE (≥10%), n (%)				
Any event (per participant)	246 (87)	225 (80)	264 (86)	220 (71)
Nasopharyngitis	56 (20)	48 (17)	52 (17)	42 (14)
Headache	39 (14)	21 (7)	34 (11)	17 (6)
Upper resp tract infection	38 (13)	28 (10)	32 (10)	25 (8)
Diarrhea	32 (11)	25 (9)	NR	NR
Drug-related AEs (≥3%), n (%)				
Any event (per participant)	79 (28)	28 (10)	88 (29)	8 (3)
Fatigue	NR	NR	11 (4)	0
Headache	14 (5)	4 (1)	11 (4)	0
Pyrexia	13 (5)	0	11 (4)	0
Nausea	NR	NR	11 (4)	0
AEs leading to withdrawal	9 (3)	4 (1)	10 (3)	5 (2)

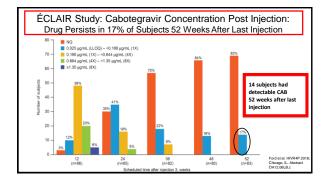
Swindells S, et al. CROI 2019; Seattle, WA. Abstract 139; Orkin C, et al. CROI 2019; Seattle, WA. Abstract 140.

Confirmed Virologic Failure	FLAI	R	ATL	AS
Virologic failure (VF) rate, CAB + RPV arm (week of suspected VF)	1.4% (Wk 20, 28, 48)		1% (Wk 8, 12, 20)	
HIV RNA at confirmed VF	287 - 488 c/mL		258 - 25,745 c/mL	
Mutations at baseline	RT None	INSTI L74I x 3	RT E138E/A, К V108V/I	INSTI L74I x 2
Mutations at VF (Treatment Emergent)	RT E138A/K/T K101E E138K	INSTI L74I x 3 Q148R G140R	RT E138A, K V108I* E138E/K	INSTI L74I x 2 N155H
HIV-1 subtype	All A1; Russia		2 – A/A1; Ru 1 – AG; Fran	
* 1 pt with prior nevirapine use had NNRTI but no INSTI mutations at VF				

Considerations for In-Clinic Administration of LA CAB/RPV

- Loading = 2 injections of 3mL; maintenance = 2 injections of 2mL – Need private space for administration
- IM administration technique: Z-tracking into gluteus medius
 Will require staff training
 - Not tested in persons with buttock implants

•


٠

٠

- Staffing for retention to ensure monthly (bimonthly?) injections
- Alternative delivery systems: Pharmacy? Home health? Mobile units?
- · Visit reminders: running out of pills often triggers visits

Cost Considerations

- · How will the drugs be priced?
- Who will purchase the drugs? Patient or provider?
- Availability of drugs "in stock" for drop in visits for patients who do not keep scheduled appointments? Shelf life?
- Copay cards do not cover drugs purchased and administered by clinics Will reimbursement cover drug cost?
- Cautionary tale: benzathine penicillin G reimbursed at below drug cost Will administration be reimbursed?
- What will be the impact on ADAP and health system costs as a whole?

Management of Long Acting Treatments

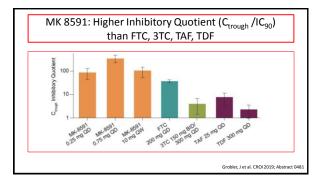
- Will we see INSTI/NNRTI resistance for those who do not return for treatment?
- How will we manage treatment-emergent drugrelated toxicities?
- How will we manage drug interactions, including for TB treatment?
- Will teratogenicity be a problem (neural tube defects)?

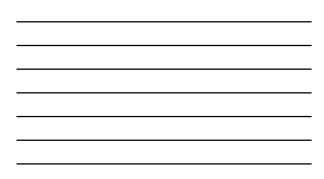
ARS 1: For what proportion of your patients would you prescribe CAB LA + RPV LA?

- 0% (Interesting but I'm just not there yet)
- < 10%
- 11-25%
- 26-50%
- 51-75%
- 100% (Greatest thing since sliced bread)
- It will totally depend on logistics and reimbursement

ARS 2: What is your primary concern about CAB LA + RPV LA?

- Patients won't come back for visits
- Toxicity management
- Pregnancy and potential teratogenicity
- Out of pocket costs to patient (or clinic)
- Logistics of administration
- I have no major concerns. Bring it on!


MK-8591: NRTTI


A Nucleoside Reverse Transcriptase Translocation Inhibitor

MK 8591 for Treatment and Prevention

Nucleoside reverse transcriptase translocation inhibitor (NRTTI)

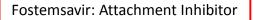
- $-\,$ Blocks translocation and terminates the DNA chain
- Also has delayed chain termination effect after incorporation
 Also known as EFdA (4'ethynyl-2 fluoro-2'deoxyadenosine)
- Very potent: dose as low as 0.25mg for treatment
- Very long half-life of tri-phosphate form: 78-128 hours
- MK 8591-TP levels above pharmacokinetic target ≥ 30 days
- after last oral dose (0.25 5.0 mg) Matthews R. CROI 2018; Markowitz M. CROI 2018; Grobler, J et al. CROI 2019; Abstract OM83

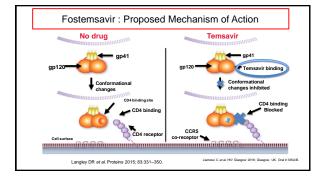
MK 8591: Long Acting Implant Formulations

Antimicrobial Agents and Chemotherapy

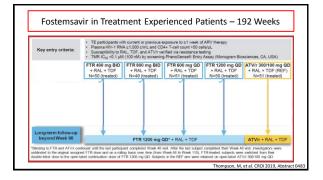
Extended Duration MK-8591-Eluting Implant as a Candidate for HIV Treatment and Prevention Durate taken Bark Disc Bar Pravilla Water Alaka Dealthead Prevent Prevent Park Stream (1997) and Alaka Stream (1997)

Stephane E. Bannet, Ryan S. Telle, Sam P. Foraler, L. Li, Magari, A. Vacaray, Daniel Skonnek, Zhen Yang, Kony L. Filignee, Gregory J. Dob, Sandra L. Wood, Jose Letron, Jay A. Om Rina L. Banchez, Zhen Liu, Beng Lu, Teo Yu, U. Sun, Marten E. Ondy Dec: 1to 1124ACACH5-19

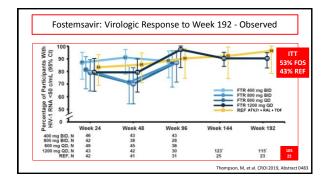

 Potentially therapeutic TP levels in rodents persist > 6 months

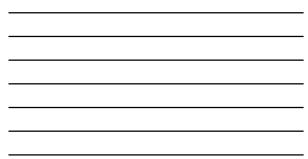

Barrett S, AAC. July, 2018. DOI: 10.1128/AAC.01058-18

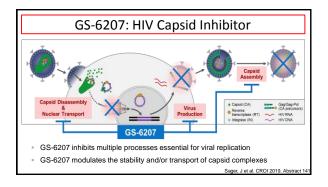
MK-8591: Summary


- Highly potent: IC50 of MK-8591-TP >4-fold lower than any marketed NRTI
- More active against NRTI-resistant viruses than TDF, TAF, 3TC
- High genetic barrier to resistance
- Very long TP intracellular half-life = potential for weekly oral dosing, long acting parenteral
- Being developed simultaneously for treatment and prevention based on positive macaque studies

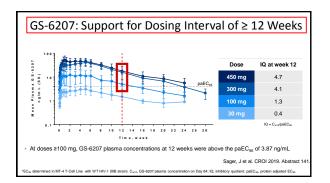
Grobler, J et al. CROI 2019; Abstract 0481






Fostemsavir: Summary

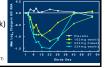
- HIV RNA and CD4 response comparable to ATV/r-RAL-TDF through 192 weeks
- Fewer safety events compared with ATV/r-RAL-TDF

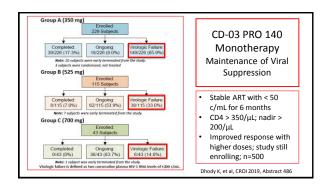

 Lower rates of Grade 2–4-drug related AEs, Grade3–4 AEs, and AEs leading to discontinuation
- Requires twice-daily dosing
- Development slowed due to manufacturing issues
- Phase 3 Highly Treatment Experienced (BRIGHTE) study ongoing

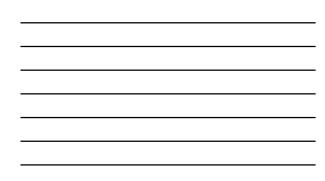
Thompson, M, et al. CROI 2019, Abstract 0483

GS-6207: Capsid Inhibitor

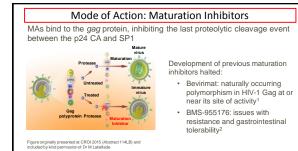
GS-6207: Summary

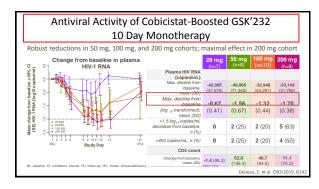

- HIV capsid inhibitor with picomolar antiviral activity
- Following a single subcutaneous dose in healthy volunteers:
 No serious safety issues (safety still blinded)
 - Maintained systemic exposure for \geq 24 weeks; most doses
- exceeded $paEC_{95}$ for ≥ 12 weeks • Potential for quarterly or less frequent dosing
- Ongoing Phase I in persons living with HIV

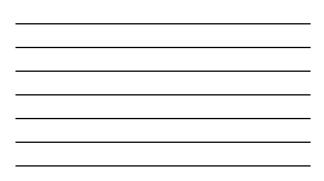

PRO-140 (leronlimab): Anti-CCR5 mAb


PRO 140: A CCR5-Directed Monoclonal Antibody

- Humanized IgG4 monoclonal antibody blocks HIV-1 entry
- High genetic barrier to resistance
- Active against multidrug resistant viruses, including those resistant to maraviroc
- Weekly SC injections
- Single dose HIV RNA reduction to 1.83 log
- Tx-experienced: \geq 0.5 log₁₀ HIV RNA decline (1 wk)
- Rolling FDA BLA: plan to file for approval 4Q2019

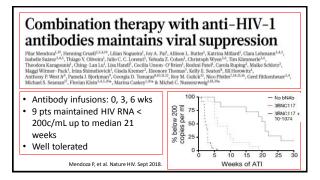

Jacobsen J, et al. J Infect Dis 2010; May 15;201(10):1481-7





GSK 2838232: Maturation Inhibitor

¹Dybowski JN, et al. BioData Min. 2011;4:26; ²Morales-Ramirez J, et al. PLoS One. 2018, https://doi.org/10.1371/j

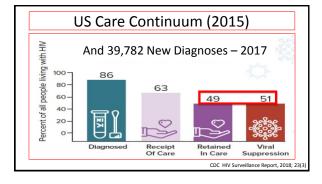


GSK2838232: Summary

- Potency at 3 highest doses, highest at 200mg
- Requires boosting for once-daily use
- 2 patients with treatment-emergent Gag mutations
 One patient with "less sensitive" virus at baseline
- Mild-moderate AEs, no serious safety issues

bNAbs (or bnAbs?)

Broadly neutralizing monoclonal antibodies for prevention, treatment, cure





Questions About Long-Acting Agents

- How long is long enough?
- How long is too long? (resistance, toxicity, teratogenicity)
- What is the optimal administration mode? SC, IM, IV, implant, stent, microneedle patch? Self-administered v provider-administered?
- For clinic-administered therapy, what will be the impact on patient flow, provider time?
- What will the drugs cost, and will cost of administration be reimbursed? Impact on health care financing as a whole?
- Will they solve or just reinvent issues with adherence?

But...the half life doesn't matter if the drug doesn't get into the patient!

Acknowledgements

- Many patients participated in clinical trials to generate the results presented today – Thank You!
- Thanks for sharing slides:
 - Gilead: Diana Brainard, Hal Martin
 - Merck: Kathleen Squires, Boris Rejifo
 - GSK/ViiV: Mark Shaefer, Max Latillade, Brian Donovan, Cathy Schubert
 - PRO 140: Kush Dhody (Amarex)