New Drugs and Novel Strategies for Antiretroviral Therapy

Constance A. Benson, MD
Professor of Medicine and Global Public Health
University of California San Diego
La Jolla, California

Learning Objectives

After attending this presentation, learners will be able to:

▪ Describe new antiretroviral drugs in development
▪ Monitor outcomes of studies of new drugs and new strategies for antiretroviral treatment
▪ Describe potential roles for new antiretroviral drugs and strategies in the treatment of people living with HIV

Do We Really Need New ARVs?

▪ Big goals
▪ Big challenges
 – Treatment for up to 6-8 decades
 – Renal, cardiovascular, liver, bone toxicities
 – Therapy options for infants, children, pregnant women
 – Adherence, life chaos, treatment fatigue, aging
 – Drug interactions (TB and others)
 – HIV resistance will emerge to existing ARVs
 ▪ Especially in regions with limited VL and DR testing

Eron J. CROI 2016
New Antiretroviral Drugs in Development

GS-6207: A Novel First in Class Capsid Inhibitor

- Active against a broad range of HIV-1 isolates, including those resistant to existing ARV classes
 - Modulates stability and/or transport of capsid complexes; inhibits multiple processes necessary for viral replication
 - Picomolar activity; more potent than current ARVs

GS-6207/placebo generally well tolerated
- No deaths or serious AEs
- No Grade 4 lab abnormalities or Grade 3 lab abnormalities of clinical relevance
- Most common AEs were transient injection site reactions

Prolonged exposures with measureable concentrations for ≥ 24 weeks
- At doses ≥ 100 mg, plasma conc at 12 weeks above the pEC95, supporting every 12 week dosing
GSK 2838232: A Novel Maturation Inhibitor

- Binds to gag; inhibits last proteolytic cleavage event between p24 capsid (CA) and spacer peptide 1 (SP1)
 - Prior maturation inhibitors had issues with naturally occurring resistance polymorphisms (bevirimat) and resistance/GI intolerance (BMS-955176)
 - In vitro nanomolar activity; minimal protein binding; inhibits HIV-1 containing the consensus Sp1 polymorphism
 - When co-administered with ritonavir → mean half-life of 34 hours
- Phase 2a study of GSK 2838232 co-administered once daily with cobicistat in HIV-infected adults

GSK 2838232: A Novel Maturation Inhibitor

- Demographics: mean age 35y; 97% men; 61% white; mean BL CD4 416-619 cells/mm³; mean BL VL 33,829-99,236 copies mL

GSK 2838232: A Novel Maturation Inhibitor

- Maximal antiviral effect observed in the 200 mg cohort with a mean -1.7 log_{10} decline in VL
 - 2 pts with treatment-emergent A364 A/V mixtures and 1 with phenotypic resistance day 11
 - No SAEs or deaths; all AEs Grade 1 or 2 with no specific pattern
MK-8591: A Novel Nucleoside Reverse Transcriptase Translocation Inhibitor

- NRTTI with unique mechanism of action
- Potent against most resistant mutants; MK-8591-TP IC50 for HIV >4-fold lower than other NRTIs
- Long MK-8591-TP intracellular half-life
- Potential for multiple low dose options and high barrier to resistance

Grobler JA, et al. CROI 2019; Abstr. 481

PGT121 Monoclonal Antibody: Therapeutic Activity in HIV-Infected Adults

- Human IgG1 mAb targeting V3 env epitope; potent neutralizer of 60-70% of global HIV-1 viruses; active in SHIV-infected monkeys
- First in-human phase 1 safety and dose-ranging (3 – 30 mg/kg) study in HIV(-) and HIV(+) patients
 - HIV-infected pts included those suppressed on ART and viremic not yet on ART
- Safe and well-tolerated; half-life of 23d; 13d in viremic, HIV-infected pts

Stephenson KE, et al. CROI 2019; Abstr. 145LB

Baseline Demographic Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Mean Age (years)</th>
<th>Mean BMI (kg/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>HIV- ART</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>HIV+, Viremic</td>
<td>31</td>
<td>25</td>
</tr>
</tbody>
</table>

Stephenson KE, et al. CROI 2019; Abstr. 145LB
Therapeutic Activity of PGT121 Monoclonal Antibody in HIV-Infected Adults

- In those with high HIV viral load at baseline (3.3–5.0 log_{10} copies/mL), 4 had no response and 5 were "responders"
 - Median VL decline in responders was 1.7 log
 - All rebounded by day 21
 - Baseline virus was sensitive to PGT121 in all; viruses after day 21 were all resistant

Stephenson KE, et al. CROI 2019; Abstr. 145LB

Therapeutic Activity of PGT121 Monoclonal Antibody in HIV-Infected Adults

- In those with low HIV viral load at baseline (<3.3 log_{10} copies/mL), prolonged antiviral response was seen
 - One pt had VL below LLOQ persisting beyond day 168 but rebounded when no further measurable PGT121
 - Second pt had no rebound virus
 - Viruses were sensitive to PGT121 at baseline and day 168
 - No evidence of enhanced cellular immune responses
 - Longest observed suppression following a single bNAb infusion

Stephenson KE, et al. CROI 2019; Abstr. 145LB

Fostemsavir (FTR, GSK3684934, BMS663068)

- Prodrug metabolized to temsavir; attachment inhibitor
 - No cross-resistance with other ARVs
 - Phase 2b dose ranging study in ART-experienced pts showed comparable rates of HIV-1 < 50 copies/mL (63-82%) vs. ATV/r (71%) + RAL + TDF at Week 48
 - After Week 48, FTR pts switched to 1200 mg QD + RAL + TDF vs. ATV/r + RAL + TDF continuation
 - Median age 39y; 60% male; 38% White; 30% Black

Comparable viral suppression and lower overall, cumulative, and treatment-limiting AEs vs. ATV’s arm

Thompson M, et al. CROI 2019; Abstr. 483
Update on New Strategies
2-Drug Therapy & Novel Formulations

Are 2-Drug Regimens as Good as 3-Drug Regimens? It Depends...

- Treatment-naive
 - LPV/r + EFV (A5142)
 - DRV/r + RAL (NEAT-001)

- Switch in virally suppressed
 - DRV/r + MVC (MARCH)
 - DRV/r + 3TC (ANDES)
 - DRV/r + ATV (SPARTAN)
 - ATV/r + 3TC (ATLAS-M, SALT)

ACTG A5142

Significantly worse lipid levels (RTV) NNRTI resistance (66% vs 43%)
Laura Waters, CROI 2019

Update on 2-Drug Regimens in Clinical Trials

- GEMINI-1 and -2: DTG + 3TC vs DTG + FTC/TDF in treatment naïve patients
 - Week 48: 91% vs 93% HIV-1 RNA < 50 copies/mL; no treatment emergent INSTI or NRTI mutations; DTG + 3TC did not perform as well in CD4 count < 200 cells/mm³ at baseline

- SWORD-1 and -2: Switch to DTG + RPV vs continue baseline 3-drug ART
 - Week 48: 95% HIV-1 RNA < 50 copies/mL in both groups; Week 100: 3 of 10 with VF in early switch arm had NNRTI resistance

- LATTE-2: CAB/ABC/3TC induction, CAB + RPV vs continue CAB/ABC/3TC
 - Week 32 (48): 94% Q4W vs 95% Q4W vs 91% Q8W vs 91% oral CAB/ABC/3TC had HIV-1 RNA < 50 copies/mL

GEMINI 1 & 2: “Target Not Detected” Abbott Real Time Assay for VL < 40 copies/mL

- Similar proportions of participants in the DTG + 3TC and DTG + TDF/FTC arm had TND by snapshot at all weeks.
 - Numerically higher for 2-drug arm for BL VL > 100,000 copies/mL.
- Median time to TND similar for both arms at Week 48
 - Shorter for 2-drug arm for BL VL > 100,000 copies/mL.

Underwood M, et al. CROI 2019; Abstr. 490

ATLAS: 48 Week Results from Switching to Cabotegravir + Rilpivirine in Virally Suppressed Patients

- Multicenter, randomized, open-label, non-inferiority design
- Primary endpoint: Proportion with HIV RNA ≥ 50 copies/mL at week 48 (FDA snapshot) in ITT-E with 6% non-inferiority margin
 - Median age 42y; 67% male; 68% White; 23% Black

Swindells S, et al. CROI 2019, Abstr. 139

Atlas: Virologic Outcomes at Week 48

- 2 of 3 pts in CAB + RPV arm with VF had baseline NNRTI RAMs
- 95% of drug-related AEs were Grade 1 or 2; no drug-related SAEs, hypersensitivity or DILI; ISRs mild, most resolved within < 7d

Swindells S, et al. CROI 2019, Abstr. 139
FLAIR: Week 48 Results of Switching to CAB + RPV Following Oral Induction Vs. Continuing DTG/ABC/3TC

- Multicenter, randomized, open-label, non-inferiority design
- Primary endpoint: Proportion with HIV RNA >50 copies/mL at week 48 (FDA Snapshot) with 6% noninferiority margin
- Median age 34y; 78% male; 74% White; 18% Black

FLAIR: Week 48 Virologic Outcomes in ITT-E Population

- Confirmed VF: n=3 per arm; emergent NNRTI, INSTI resistance in all CAB + RPV failures; no resistance in DTG/ABC/3TC failures

FLAIR: Week 48 Virologic Outcomes in ITT-E Population

- Plasma concentrations with IM CAB and RPV similar to effective PO regimens
- 94% of AEs were Grade 1 or 2, no drug-related hypersensitivity or DILI, 1 SAE (monoarticular arthritis); ISR most common AE; 99% Grade 1 or 2 most resolved in ≤7d
Where does 2-drug therapy fit?

- Clinical benefit in reducing toxicity…
 - Bone, renal toxicity (TDF)
 - Cardiovascular toxicity (ABC)
 - Mitochondrial toxicity of other NRTIs
 - Improved patient satisfaction
- Reduced cost?
 - Study visit frequency, monitoring
 - Supplies for injections
- But…
 - Underlying HBV
 - Adherence; delayed/missed doses
 - Drug-drug interactions (PI/r, RPV, INSTI-based 2-drug regimens)
 - Barrier to resistance (RPV-, RAL-based 2-drug regimens)
 - Toxicity
 - CNS, weight gain, neural tube defect (DTG)
 - Lipids (PI/r)

Where does 2-drug therapy fit?

The Pozniak Paradox

- Staff
 - Booking
 - Prescribing
 - Administering

- Patients
 - ORAL: 2 visits/year = 1000 clinic hours
 - INJECTABLE: 6 visits/year = 3000 clinic hours

- Time
 - Convenience
 - Confidentiality
 - Tolerability

- Reduced:
 - Sts
 - Supplies
 - Injections

Cost-Effectiveness of Long-Acting ART

- CEPAC computer simulation study comparing:
 - Daily oral 3-drug therapy
 - LA ART in pts with multiple prior ART failures
 - LA ART in pts failing first-line ART
 - LA ART for ART-naïve pts
- LA ART increased overall life expectancy by 0.15-0.24 years (0.51-0.89 years in poorly adherent pts)
- LA ART cost-effective at annual drug cost of $40-$70K, $26-$31K, and $24-$27K, respectively, vs. $25-$28K for daily oral ART
Current Recommendations for 2-Drug ART

- DHHS Guidelines October 2018: “Consider when ABC, TAF & TDF cannot be used or are not optimal”
 - DTG + 3TC
 - DRV/r + 3TC
 - DRV/r once daily + RAL twice daily if viral load < 100,000 copies/mL and CD4 > 200 cells/mm3
- IAS-USA Recommendations 2018:
 - For initial therapy → “…only recommended in the rare situations in which a patient cannot take ABC, TAF, or TDF”
 - Switch in the setting of viral suppression → “…can be used in patients with no prior virologic failure or transmitted drug resistance”

www.aidsinfo.nih.gov/guidelines; Saag MS, et al. JAMA 2018

Novel Formulations

- Novel long-acting drug eluting subcutaneous implant
 - TAF subcutaneous implant: Simulation suggested > 0.6 mg/d eluted from the implant would be needed to provide TFV-DP concentrations above target in PBMCs; predicted lower exposure in cervical and rectal tissue
- Nanoparticle long-acting injectable pro-drug formulations
 - FTC: 2 formulations given IM to mice followed by 7d HIV challenge → 100% protection for both; 100% protection after 14d for one formulation
 - Cabotegravir: 2nd generation CAB prodrug nanoformulation → 10-fold improvement in PK; safe; sustained activity ~6mos; retained and slowly released by macrophages

Summary

- The pipeline for development of novel investigational ARVs and research evaluating novel regimens and strategies is relatively robust and offer:
 - Comparable or improved activity compared to many current first line regimens
 - Improved tolerability
 - Improved resistance profiles
- The promise of novel long-acting injectable or implant formulations
 - Fewer drugs; fewer pills; potentially lower cost; less drug resistance?
Question-and-Answer