COVID and HIV: Dual Level Interactions

Robert T. Schooley, MD Distinguished Professor of Medic

University of California San Diego

Financial Relationships With Ineligible Companies (Formerly Described as Commercial Interests by the ACCME) Within the Last 2 Years:

Dr Schooley has served as a consultant to LysNtech and Merck and serves on Data Monitoring Committees for Merck and VIR Biotechnology. He has stock options from Antiva Biosciences and CytoDyn. (Updated 11/3/21)

Slide 2

Learning Objectives

After attending this presentation, learners will be able to:

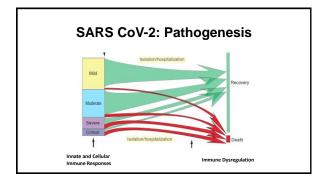
- Describe the potential biological and clinical interactions between SARS CoV-2 and HIV.
- Describe appropriate use of COVID drugs and vaccines for the HIV-1 infected population

Slide 3

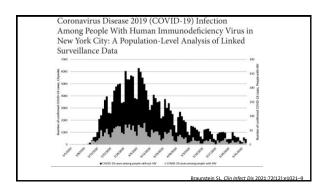
Disease 2019 Outcomes and Implications for Vaccination

Wagains A. Triang, ^{1/2} and Rayash T. Gandin^{1/2}

Takkin of Infections Disease, Massachusett General Heights, Baston, Massachusett, USA, ¹Division of General Internal Medicine, Massachusett General Heights, Baston, Massachusett
USA, and ³Verset's Medical School, Senter, Massachusett, USA


When Epidemics Collide: Why People With Human Immunodeficiency Virus May Have Worse Coronavirus

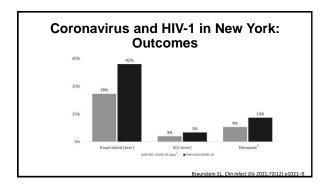
Triant and Gandhi, Clin Infect Dis. 2021 Jun 15;72(12):e1030-e1034. doi: 10.1093/cid/ciaa1946.


COVID and HIV: Dual Level Interactions Individual Society

COVID Interactions with HIV at the Individual and Societal Levels

- Biological Interactions at the Individual Level
 - Host defense from SARS CoV-2 requires an intact immune response
 - Implications for disease
 - Implications for prophylaxis and therapy
 - Substantial components of morbidity and mortality from COVID relate to immunoregulatory dysfunction and excessive activation
- Interactions at the Societal Level
 - Disruption of health care systems
 - Food insecurity
 - Stigmatized populations

Are People with HIV at Risk for More Severe Outcome if they Become Infected with SARS CoV-2?



Coronavirus and HIV-1 in New York: NYC Wave 1

- Linkage of the NYC Department of Health and Mental Hygiene's (DOHMH) HIV surveillance registry with the NYC DOHMH COVID-19 surveillance system through June of 2020
- 204,583 COVID-19 cases of which 2410 were PLWHIV

	HIV with COVID	HIV without COVID	COVID without HIV
Subjects, n	2410	113,907	202,012
Male, %	71.4	73.4	51.1
Black,%	45	44	16
Hispanic,%	41	34	17
≥ Underlying condition, %	64		35

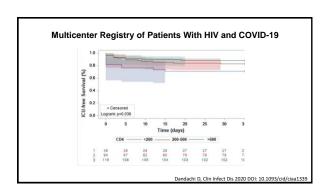
Braunstein SL. Clin Infect Dis 2021:72(12):e1021-9

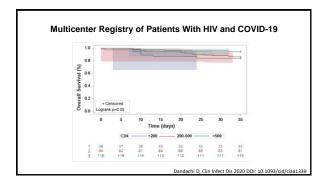
Coronavirus and HIV-1 in New York: Conclusions

- No overrepresentation of COVID cases among PLWHIV in New York
 - 1.06% of COVID patients in NYC were PLWHIV
 - 1.5% of New Yorkers are PLWHIV
- A higher proportion of NYC PWH with COVID-19 were hospitalized for COVID-19, admitted to the ICU, and died due to COVID-19.
- NYC PWH have characteristics in common with people who have been diagnosed with COVID-19 and had poor outcomes.
- Compared with PWH without COVID, PWH with COVID-19 were more likely to be Latino and less likely to be White

Braunstein St. Clin Infect Dis 2021:72(12):e1021=

Multicenter Registry of Patients With HIV and COVID-19

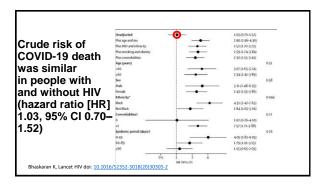

- COVID-19 in PWH Registry sponsored by the University of Missouri, Columbia
- Multicenter registry for PWH who had COVID-19 and received care between 1 April and 1 July 2020.
- Promoted in the IDSA and HIV Medical Association discussion forums
- 18 years and older inpatients or outpatients with a diagnosis of HIV and laboratory-confirmed COVID-19
- 286 unique PWH and laboratory-confirmed COVID-19


Dandachi D, Clin Infect Dis 2020 DOI: 10.1093/cid/ciaa1339

Multicenter Registry of Patients With HIV and COVID-19 TABLE 1: Patient Demographics and Baseline Characteristics, stratified by hospitalization (n=286) p-value < 0.01 < 0.01</pre> Variables Mean age, years (N=286) n (%) 51.4 (SD 14.4) Non-hospitalized Hospitalized 45.4 (SD 12.7) 55.8 (SD 14.0) Age in years <40 40-60 66 (23.1%) 42 (34.4%) 24 (14.6%) 146 (51.0%) 74 (25.9%) 64 (52.5%) 16 (13.1%) 82 (50.0%) 58 (35.4%) Sex (N=286) 0.23 36 (29.5%) 86 (70.5%) 38 (23.2%) 126 (76.8%) 74 (25.9%) 212 (74.1%) Female Male Male Years with HIV (N=231) < 1 year 1 - 5 years > 5 years > 5 years CD4 Count (N=268) < 200 cells imm3 200 - 500 cells imm3 > 500 cells imm3 Viral Load sunnression * (N=265) < 0.01 5 (4.6%) 9 (7.3%) 11 (8.9%) 103 (83.7%) 14 (6.1%) 37 (16.0%) 180 (77.9%) 26 (24.1%) 77 (71.3%) < 0.01 41 (15.3%) 5 (4.5%) 36 (23.1%) 33 (29.5%) 74 (66.1%) 107 (93.9%) 65 (41.7%) 55 (35.3%) 128 (84.8%) 129 (48.1%) 235 (88.7%) Dandachi D, Clin Infect Dis 2020 DOI: 10.1093/cid/ciaa1339

	4 D!-4f	D-4:4- V	/: 4L I	IIV CO	///
lullicer	iter Registry of	ratients v	VILII F	niv and CO	VID-
TABLE 4 Med	tivariable analysis examining the asso	olation between bounts	limiter ou	one entropy and distract	
	of patients with HIV and COVID-19	(n=286)			
		Logistic regress analysis	ion	Generalized Estimating (GEE)	Equation
Outcome		Odds ratio (95% CI)	p- value	Odds ratio (95% CI)	p- value
	Age, years	1.04 (1.01- 1.08)	0.01	1.08 (1.04 -1.07)	0.00
	CD4 count				
	< 200 cells/mm3	5.22 (1.28 - 21.35)	0.02	3.67 (1.64 17.1)	< 0.0
	200 - 500 cells/mm3	1.47 (0.7-3.08)	0.30	1.12 (1.1-12.22)	0.00
Hospitalization	> 500 cells/mm3	1.00 (reference)			
	Chronic kidney disease	5.12 (1.60-16.85)	< 0.01	4.08 (1.45 - 11.52)	< 0.0
		1.00 (reference)			
	Chronic lung disease	4.54 (1.58-13.01)	< 0.01	4.06 (1.87 - 8.81)	< 0.0
		1.00 (reference)			
	Comorbidity burden				
	HIV disease with no other known comorbidity	1.00 (reference)			
	HIV with 1 or 2 comorbidities	1.19 (0.56-2.55)	0.65	1.13 (0.49- 2.6)	0.78
	HIV with 3 or more comorbidities	4.56 (1.81-11.48)	< 0.01	3.57 (1.29 - 9.9)	0.0

	Iulticenter Registry TABLE 4. Multivariable analysis examinin	g the association between h			
	characteristics of patients with HIV and CO	VID-19 (n=286) Logistic r anal		Generalized Estimating	Equation :
	Age, years	1.04 (1.01- 1.07)	0.02	1.04 (1.0 -1.07)	0.02
	CD4 count				
	< 200 cells/mm3	3.32 (1.11-9.93)	0.03	2.8 (1.02-7.67)	0.05
	200 - 500 cells/mm3	1.75 (0.76-4.02)	0.19	1.93 (0.73-5.06)	0.18
vere	> 500 cells/mm3	1.00 (reference)			
come	Hypertension	2.44 (1.01-5.55)	0.03	2.43 (1.2- 4.93)	0.01
		1.00 (reference)			
	Chronic lung disease	3.65 (1.56-8.56)	< 0.01	3.37 (1.63- 6.97)	< 0.01
		1.00 (reference)			
	Comorbidity burden				
	HIV disease with no other known comorbidity	1.00 (reference)			
	HIV with 1 or 2 comorbidities	2.58 (0.56-11.91)	0.23	2.21 (0.42-11.7)	0.35
	HIV with 3 or more comorbidities	5.09 (1.05-24.76)	0.04	5.40 (1.02-28.54)	0.05



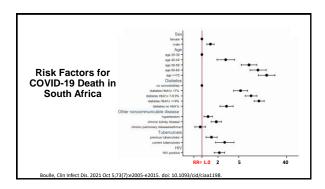
HIV infection and COVID-19 death: a populationbased cohort analysis of UK primary care data

- Retrospective cohort study that analyzed electronic primary care data and death registry data
- >18 in a primary care database on February 1, 2020
 - $\bullet\,$ Separated into those with and without HIV
- Primary endpoint: COVID death based on ICD-10 codes on death certificate
- 17,282,905 adults of whom 27,480 were recorded to be HIV infected
- Adjusted for age, sex, index of multiple deprivation, ethnicity, comorbidities

Bhaskaran K, Lancet HIV doi: 10.1016/S2352-3018(20)30305-2

□ No HIV After adjusting for age and sex, HIV was associated with a 2.9-fold higher risk of COVID-19 death (HR 1.96-4.30; p<0.0001) Bhaskaran K, Lancet HIV doi: 10.1016/52352-3018(20)30305-2

Risk Factors for COVID-19 Death in South Africa


- Population cohort study using linked data from adults attending public-sector health facilities in the Western Cape, South Africa
- · Cox proportional hazards models, adjusted for age, sex, location, and comorbidities, to examine the associations between HIV, tuberculosis, and COVID-19 death from 1 March to 9 June 2020
 - public-sector "active patients" (≥1 visit in the 3 years before March 2020)
 - laboratory-diagnosed COVID-19 cases
 - hospitalized COVID-19 cases.
- Standardized mortality ratio (SMR) for COVID-19, comparing adults living with and without HIV using modeled population estimates

Boulle, Clin Infect Dis. 2021 Oct 5:73(7):e2005-e2015, doi: 10.1093/cid/ciaa1198.

Risk Factors for COVID-19 Death in **South Africa**

- 3 460 932 patients (16% living with HIV)
 22 308 were diagnosed with COVID-19, of whom 625 died
- HIV was associated with COVID-19 mortality (adjusted hazard ratio [aHR], 2.14; [CI], 1.70-2.70)
- · Similar risks across strata of viral loads and immunosuppression.
- · Current and previous diagnoses of tuberculosis were associated with COVID-19 death (aHR, 2.70 [CI, 1.81-4.04] and 1.51 [CI, 1.18-1.93], respectively).
- The SMR for COVID-19 death associated with HIV was 2.39 (CI, 1.96–2.86); population attributable fraction 8.5% (95% CI, 6.1–11.1).

Boulle, Clin Infect Dis. 2021 Oct 5;73(7):e2005-e2015. doi: 10.1093/cid/ciaa1198

Risks by HIV Condition among Hospitalized Patients

Status	RR	95% CI	"p"
HIV uninfected (ref)	1.0		
HIV infected	1.45	1.14-1.84	0.002
CD4 <u>></u> 350 cells/mm ³	1.24	.95-1.63	.112
CD4 200 - 234 cells/mm ³	1.65	.94-2.88	.08
CD4<200 cells/mm3	2.36	1.47-3.78	<.001

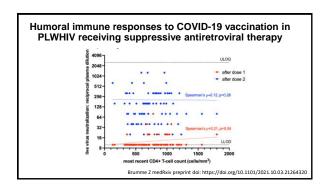
Boulle, Clin Infect Dis. 2021 Oct 5:73(7):e2005-e2015, doi: 10.1093/cid/ciaa1198.

HIV and COVID: Conclusions

- No current evidence that people with HIV-1 infection are more likely to contract COVID than the non-HIV infected population given similar levels of exposure.
- levels of exposure

 PLWHIV are more likely to disproportionately share societal risks that place them at higher risk of becoming COVID exposed
- There is some evidence that after adjusting for underlying risk factors that people with HIV may be at a greater risk of dying from COVID
- \bullet Risks driving more severe COVID in those with HIV are similar to those without HIV
- People with HIV who have lower CD4 cell counts do appear to be a higher risk of death

Do People with HIV Respond Similarly to COVID-19 Vaccines?


Humoral immune responses to COVID-19 vaccination in PLWHIV receiving suppressive antiretroviral therapy

- 100 PLWH and 152 controls on ARV
 - Most recent plasma HIV RNA measurement
 - <50 copies/ml for 95 PLWH71-162 for the rest
 - \bullet Most recent CD4 cell count: 710 (IQR 525-935; range 130-1800) cells/mm 3
- 97% of controls received an mRNA vaccine for their first dose compared to 83% of PLWH; most received mRNA second doses

Humoral immune responses to COVID-19 vaccination in PLWHIV receiving suppressive antiretroviral therapy

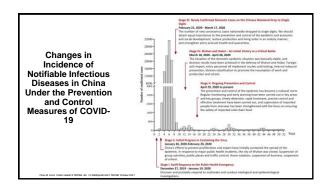
	Time	Estimate	95% CI.	р	Estimate	95% CI	р
log, viral neutralization*	HIV	-0.28	-0.62 to 0.056	0.10	0.17	-0.51 to 0.84	0.63
	Age (per decade increment)	-0.047	-0.11 to 0.017	0.15	-0.18	-0.31 to -0.054	0.0055
	Male sex	-0.1	-0.33 to 0.12	0.38	-0.37	-0.82 to 0.077	0.10
	White Ethnicity	0.057	-0.14 to 0.25	0.57	-0.16	-0.56 to 0.24	0.42
	# Chronic conditions (per # increment)	0.046	-0.078 to 0.17	0.47	-0.29	-0.54 to -0.047	0.02
	ChAdOx1 as first vaccine	-0.14	-0.48 to 0.21	0.44			
	Dual ChAdOx1 regimen				-1.37	-2.40 to -0.35	0.0088
	Dose interval (per week increment)			-	0.049	-0.028 to 0.13	0.21
	Days since vaccine	0.024	-0.061 to 0.55	0.12	-0.0092	-0.076 to 0.058	0.79
	EDTA as anticoagulant ^a	0.3	-0.061 to 0.66	0.1	0.83	0.061 to 1.60	0.035
	COVID-19 convalescent	3.9	3.60 to 4.22	< 0.0001	1.07	0.43 to 1.70	0.0011

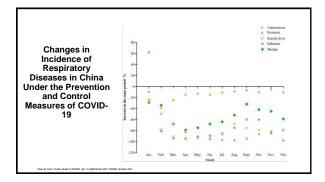
Brumme Z medRxiv preprint doi: https://doi.org/10.1101/2021.10.03.21264320

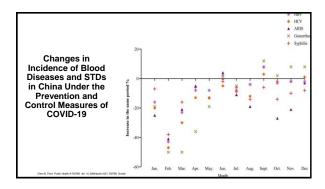
BNT162b2 mRNA Vaccine in People Living With HIV

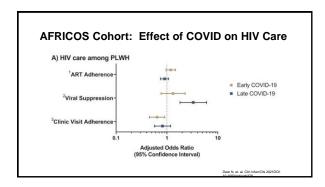
- Twelve HIV-1 infected and 17 uninfected controls
 - PWH were on suppressive ART (3 with low level viremia)
 - Median CD4 cell count 913 cells/mm³ (range 649-1678)
- Blood drawn 7 17 days after the second dose of BNT162b2 vaccine

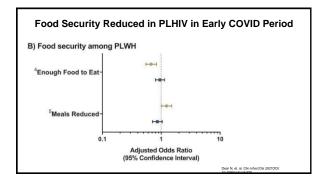
Woldemeskel BA, Clin Infect Dis, ciab648, https://doi.org/10.1093/cid/ciab64

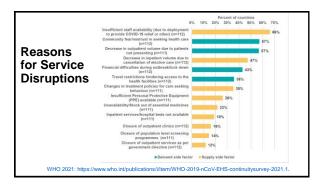

Humoral Immune Response to COVID Vaccination in HIV-1 Infected Persons A A SEASON OF THE PROPERTY OF THE PROP


Cellular Immune Response to COVID Vaccination in HIV-1 Infected Persons


HIV and COVID: Implications for Prevention and Treatment


- Prevention
 - COVID vaccination is as essential for PLWHIV as in the non-HIV-1 infected population
 - PLWHIV generally have excellent humoral and cellular immune responses to mRNA and Ad-based COVID vaccination
 - Very modest reduction in humoral responses after a single vaccination
- Treatment
 - PLWHIV moderately more likely to get into trouble with COVID than non-HIV
 - Therapeutic interventions should mirror approaches in the non-HIV-1 infected population (comorbidities and health disparities are important issues)
 Therapeutic interventions should mirror approaches in the non-HIV-1 infected population for similar levels of risk and COVID disease


COVID and HIV: Dual Level Interactions				
Ť				
Individual	Society			



Use of Telehealth was Greatest in HICs 100% 90% 90% 90% 66% 66% 65% 29% 10% # Global (n=112) # High income (n=25) # Upper middle income (n=31) # Low income (n=24) WHO 2021: https://www.who.int/publications/iftem/WHO-2019-nCoV-EHS-continuitysurvey-2021.1.

Summary and Conclusions (1)

- COVID-19 had a substantial impact on the PLWHIV throughout the world
- HIV infection per se does not increase the risk of becoming infected with SARS CoV-2
- HIV-1 infected persons who do get infected with SARS CoV-2, morbidity and mortality directly directly by COVID is generally not substantially greater than in the uninfected population (except for those with very advanced HIV-1 infection).
 - PLWHIV experience increased COVID-related morbidity from the same risk factors as in the uninfected population but they may have more of these comorbidities

Summary and Conclusions (2)

- The approach to using COVID vaccines and therapeutics in the HIV-1 infected population should parallel that in the uninfected population.
- Lockdowns, isolation and quarantine reduced the number of non-COVID infections of several key types
- In some settings COVID-related disruptions to the health care systems complicated care for HIV and other diseases but, in general, the global health care work force responded incredibly well
- Disadvantaged populations are disproportionately represented in both the HIV-1 and the SARS CoV-2 infected populations.
- Health equity remains an essential but elusive goal

Thank You!	
Question-and-Answer Session	